cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A243207 Triangle T(n, k) = Numbers of inequivalent (mod D_3) ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 2, 4, 3, 1, 3, 10, 20, 25, 11, 3, 4, 22, 77, 186, 266, 221, 86, 14, 5, 41, 223, 881, 2344, 4238, 4885, 3451, 1296, 220, 7, 1, 7, 72, 552, 3146, 12907, 38640, 83107, 126701, 132236, 90214, 37128, 8235, 775, 24, 8, 116, 1196, 9264, 53307, 232861, 773930
Offset: 1

Views

Author

Heinrich Ludwig, Jun 01 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 1 <= k <= A227308(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no three of them form an equilateral triangle with sides parallel to the grid is given by A227308(n).

Examples

			The triangle begins:
  1;
  1,  1;
  2,  4,   3,   1;
  3, 10,  20,  25,   11,    3;
  4, 22,  77, 186,  266,  221,   86,   14;
  5, 41, 223, 881, 2344, 4238, 4885, 3451, 1296, 220, 7, 1;
  ...
There is T(6, 12) = 1 way to place 12 points (x) on the grid obeying the rule in the definition of the sequence:
           .
          x x
         x . x
        x . . x
       x . . . x
      . x x x x .
		

Crossrefs

Cf. A227308, A243211, A239572, A234247, A231655, A243141, A001399 (column 1), A227327 (column 2), A243208 (column 3), A243209 (column 4), A243210 (column 5).

A243142 Number of inequivalent (mod D_3) ways to place 3 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.

Original entry on oeis.org

0, 3, 19, 75, 218, 542, 1178, 2350, 4340, 7585, 12605, 20153, 31094, 46620, 68068, 97212, 136008, 186975, 252855, 337095, 443410, 576378, 740894, 942890, 1188668, 1485757, 1842113, 2267125, 2770670, 3364280, 4060040, 4871928, 5814544, 6904635, 8159643, 9599427
Offset: 2

Views

Author

Heinrich Ludwig, May 30 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^3*(2*x^5-5*x^4+x^3-8*x^2-7*x-3) / ((x-1)^7*(x+1)^3), {x, 0, 40}], x],2] (* Vaclav Kotesovec, May 31 2014 after Colin Barker *)
  • PARI
    concat(0, Vec(x^3*(2*x^5-5*x^4+x^3-8*x^2-7*x-3)/((x-1)^7*(x+1)^3) + O(x^100))) \\ Colin Barker, May 30 2014

Formula

a(n) = (n^6 + 3*n^5 - 5*n^4 + 6*n^3 - 68*n^2 + 72*n + IF(MOD(n, 2) = 1)*(27*n^2 - 81*n + 45))/288.
G.f.: x^3*(2*x^5-5*x^4+x^3-8*x^2-7*x-3) / ((x-1)^7*(x+1)^3). - Colin Barker, May 30 2014

A243143 Number of inequivalent (mod D_3) ways to place 4 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.

Original entry on oeis.org

1, 22, 170, 816, 2947, 8765, 22703, 52823, 113042, 225817, 426299, 766905, 1324282, 2206478, 3563770, 5599258, 8584775, 12875840, 18934040, 27347390, 38860741, 54402707, 75125825, 102441321, 138070912, 184090795, 242997153, 317760863, 411908932, 529591532, 675681764
Offset: 3

Views

Author

Heinrich Ludwig, May 30 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[-x^3*(3*x^10 - 10*x^9 + 19*x^8 - 13*x^7 + 102*x^6 + 105*x^5 + 144*x^4 + 125*x^3 + 67*x^2 + 17*x + 1) / ((x-1)^9*(x+1)^4*(x^2+1)), {x, 0, 40}], x],3] (* Vaclav Kotesovec, May 31 2014 after Colin Barker *)

Formula

a(n) = (n^8 + 4*n^7 - 14*n^6 - 56*n^5 + 136*n^4 - 104*n^3 + 552*n^2 - 672*n)/2304 + IF(MOD(n, 2) = 1)*(28*n^3 - 198*n^2 + 296*n + 21)/768 + IF(MOD(n-1, 4) <= 1)*(-1/8).
G.f.: -x^3*(3*x^10 -10*x^9 +19*x^8 -13*x^7 +102*x^6 +105*x^5 +144*x^4 +125*x^3 +67*x^2 +17*x +1) / ((x -1)^9*(x +1)^4*(x^2 +1)). - Colin Barker, May 30 2014

A243144 Number of inequivalent (mod D_3) ways to place 5 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.

Original entry on oeis.org

0, 7, 204, 1891, 10846, 46068, 159830, 477033, 1268614, 3075291, 6911894, 14580293, 29145928, 55620816, 101945063, 180327134, 309087474
Offset: 3

Views

Author

Heinrich Ludwig, May 31 2014

Keywords

Crossrefs

Formula

a(n) = (n^10 + 5*n^9 - 30*n^8 - 150*n^7)/23040 + O(n^6).
Showing 1-4 of 4 results.