A240468 Sum of the distinct prime divisors of the palindromes having an even number of digits.
11, 13, 14, 13, 16, 16, 18, 13, 14, 31, 112, 51, 11, 142, 61, 162, 41, 33, 192, 33, 16, 114, 66, 53, 42, 13, 23, 144, 30, 34, 294, 304, 115, 324, 47, 51, 18, 364, 14, 33, 30, 16, 210, 114, 39, 66, 51, 53, 240, 36, 50, 35, 113, 19, 117, 119, 26, 123, 125, 36, 152, 296, 16, 306, 162, 117, 20
Offset: 1
Examples
a(11) = 112 because Sopf(A056524(11)) = Sopf(1111) = A008472(1111) = 112.
Links
- Michel Lagneau, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):for n from 1 to 100 do:x:=convert(n,base,10):n1:=nops(x): s:=sum('x[i]*10^(n1-i)', 'i'=1..n1):y:=n*10^n1+s:z:=factorset(y):n2:=nops(z):s1:=sum('z[j]', 'j'=1..n2):printf(`%d, `,s1):od:
-
Mathematica
Join[{11},d[n_]:=IntegerDigits[n];Rest[Total[Transpose[FactorInteger[Plus[FromDigits[Join[x=d[#],Reverse[x]]]]]][[1]]]&/@Range[100]]]
Comments