A240677 a(n) = 6*Zeta(1-n)*n*(2^n-1) - Zeta(-n)*(n+1)*(2^(n+2)-2), for n = 0 the limit is understood.
1, -2, -3, -1, 3, 3, -9, -17, 51, 155, -465, -2073, 6219, 38227, -114681, -929569, 2788707, 28820619, -86461857, -1109652905, 3328958715, 51943281731, -155829845193, -2905151042481, 8715453127443
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Cf. A240485.
Programs
-
Maple
A240677 := n -> `if`(n=0, 1, 6*Zeta(1-n)*n*(2^n-1) - Zeta(-n)*(n+1)*(2^(n+2)-2)); seq(A240677(n), n=0..24); # Peter Luschny, Apr 11 2014
-
Mathematica
g[0] = 0; g[1] = -1; g[n_] := n*EulerE[n - 1, 0]; a[n_] := 3*g[n] - g[n + 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 10 2014 *)
-
PARI
x = 'x+O('x^66); A = -2*exp(x)*(2*x+exp(x)*(3*x-1)-1)/(exp(x)+1)^2; Vec( serlaplace(A) ) /* Peter Luschny, Apr 10 2014 */
Comments