A240503
Numbers k such that 5^k - 4^k - 3^k - 2^k - 1 is prime.
Original entry on oeis.org
4, 8, 72, 396, 4428, 63152
Offset: 1
5^4-4^4-3^4-2^4-1 = 271 is prime. Thus, 4 is a term of this sequence.
A240747
Least number k > 0 such that n^k - (n-1)^k - ... - 3^k - 2^k - 1 is prime, or 0 if no such k exists.
Original entry on oeis.org
2, 0, 2, 4, 4, 0, 0, 0, 8, 0, 0, 12
Offset: 2
5^1 - 4^1 - 3^1 - 2^1 - 1 = -5 is not prime;
5^2 - 4^2 - 3^2 - 2^2 - 1 = -5 is not prime;
5^3 - 4^3 - 3^3 - 2^3 - 1 = 25 is not prime;
5^4 - 4^4 - 3^4 - 2^4 - 1 = 271 is prime. Thus, a(5) = 4.
-
s(n)=for(k=1,6000,if(ispseudoprime(n^k-sum(i=1,n-1,i^k)),return(k)))
n=1; while(n<200,print(s(n));n+=1)
A240748
Numbers n such that n^k - (n-1)^k - ... - 3^k - 2^k - 1 is prime for some k.
Original entry on oeis.org
2, 4, 5, 6, 10, 13
Offset: 1
There are primes of the form 2^k-1 (A000043) so 2 is a member of this sequence.
-
s(n) = for(k=1,6000,if(ispseudoprime(n^k-sum(i=1,n-1,i^k)),return(k)))
n=1; while(n<200,if(s(n),print(n));n+=1)
Showing 1-3 of 3 results.
Comments