cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A240513 Number of n X 2 0..1 arrays with no element equal to exactly two horizontal and vertical neighbors, with new values 0..1 introduced in row major order.

Original entry on oeis.org

2, 3, 6, 10, 21, 42, 86, 179, 370, 770, 1601, 3330, 6930, 14419, 30006, 62442, 129941, 270410, 562726, 1171043, 2436962, 5071362, 10553601, 21962242, 45703842, 95110563, 197926886, 411889610, 857150101, 1783745642, 3712008566, 7724760339
Offset: 1

Views

Author

R. H. Hardin, Apr 06 2014

Keywords

Comments

Column 2 of A240519.

Examples

			All solutions for n=4:
..0..1....0..1....0..1....0..1....0..0....0..1....0..1....0..1....0..1....0..1
..0..0....0..1....1..0....0..1....1..1....1..0....1..1....1..0....1..0....1..0
..0..1....1..0....1..1....1..0....0..0....1..0....0..1....0..1....0..0....0..1
..1..0....1..0....1..0....0..1....1..1....0..1....1..0....1..0....1..0....0..1
		

Crossrefs

Cf. A240519.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) - a(n-3) - 2*a(n-4) + a(n-5).
Empirical g.f.: x*(2 - x)*(1 - x^2 - 2*x^3) / ((1 - x)*(1 - x - 2*x^2 - x^3 + x^4)). - Colin Barker, Feb 24 2018
Empirical: a(n) = 1+A105309(n). - R. J. Mathar, Nov 09 2018

A240514 Number of nX3 0..1 arrays with no element equal to exactly two horizontal and vertical neighbors, with new values 0..1 introduced in row major order.

Original entry on oeis.org

3, 6, 10, 28, 73, 196, 515, 1376, 3686, 9914, 26681, 71876, 193749, 522510, 1409414, 3802164, 10257707, 27675148, 74669353, 201466240, 543583450, 1466670482, 3957312647, 10677488468, 28809678971, 77733469590, 209738364682
Offset: 1

Views

Author

R. H. Hardin, Apr 06 2014

Keywords

Comments

Column 3 of A240519

Examples

			Some solutions for n=4
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..1....0..1..0
..1..0..0....1..0..1....0..0..1....1..1..1....0..0..1....1..0..0....1..0..0
..0..1..0....0..1..0....0..1..0....0..0..0....0..1..0....0..1..1....1..1..0
..1..0..1....1..0..1....1..1..1....1..0..1....1..0..1....1..0..0....1..0..1
		

Formula

Empirical: a(n) = 4*a(n-1) -3*a(n-2) -2*a(n-3) +2*a(n-4) +2*a(n-5) -7*a(n-6) -8*a(n-7) +15*a(n-8) +4*a(n-9) -8*a(n-10) -4*a(n-11) +15*a(n-12) +8*a(n-13) -7*a(n-14) -2*a(n-15) +2*a(n-16) +2*a(n-17) -3*a(n-18) -4*a(n-19) -a(n-20)

A240515 Number of nX4 0..1 arrays with no element equal to exactly two horizontal and vertical neighbors, with new values 0..1 introduced in row major order.

Original entry on oeis.org

5, 10, 28, 99, 326, 1080, 3765, 13282, 46928, 166611, 595402, 2132856, 7647821, 27453594, 98644580, 354622219, 1275200926, 4586567656, 16499401997, 59359672578, 213570572184, 768440651027, 2764982991218, 9949082534056
Offset: 1

Views

Author

R. H. Hardin, Apr 06 2014

Keywords

Comments

Column 4 of A240519

Examples

			Some solutions for n=4
..0..1..1..1....0..1..0..1....0..1..0..1....0..0..0..1....0..1..1..1
..1..0..1..0....1..1..1..0....0..1..0..1....1..0..1..0....0..0..1..0
..1..1..0..0....0..1..0..1....1..0..1..0....1..1..0..1....0..1..0..1
..1..0..1..0....1..0..0..0....0..1..1..1....1..0..0..0....1..1..1..0
		

Formula

Empirical: a(n) = 5*a(n-1) -5*a(n-2) +4*a(n-3) -3*a(n-4) -49*a(n-5) +10*a(n-6) +15*a(n-7) +45*a(n-8) +124*a(n-9) +131*a(n-10) +301*a(n-11) +18*a(n-12) -615*a(n-13) -201*a(n-14) -1508*a(n-15) -823*a(n-16) -413*a(n-17) -254*a(n-18) +2467*a(n-19) +793*a(n-20) +4516*a(n-21) +1071*a(n-22) +2289*a(n-23) -2289*a(n-25) -1071*a(n-26) -4516*a(n-27) -793*a(n-28) -2467*a(n-29) +254*a(n-30) +413*a(n-31) +823*a(n-32) +1508*a(n-33) +201*a(n-34) +615*a(n-35) -18*a(n-36) -301*a(n-37) -131*a(n-38) -124*a(n-39) -45*a(n-40) -15*a(n-41) -10*a(n-42) +49*a(n-43) +3*a(n-44) -4*a(n-45) +5*a(n-46) -5*a(n-47) +a(n-48)

A240516 Number of n X 5 0..1 arrays with no element equal to exactly two horizontal and vertical neighbors, with new values 0..1 introduced in row major order.

Original entry on oeis.org

8, 21, 73, 326, 1376, 6205, 28942, 135093, 636475, 3024792, 14429369, 69010353, 330906118, 1589431389, 7642628408, 36779710534, 177110221193, 853219818189, 4111568990816, 19817506062480, 95533854083563, 460587995304966
Offset: 1

Views

Author

R. H. Hardin, Apr 06 2014

Keywords

Comments

Column 5 of A240519.

Examples

			Some solutions for n=4
..0..1..1..0..1....0..1..1..1..0....0..0..0..1..0....0..1..0..1..0
..1..0..0..0..0....1..0..1..0..0....1..0..1..0..1....1..1..1..0..1
..0..1..0..1..1....0..1..0..1..0....0..1..0..0..0....0..1..0..1..1
..1..0..1..0..0....1..0..1..1..1....1..1..1..0..1....1..0..1..0..1
		

Crossrefs

Cf. A240519.

A240517 Number of nX6 0..1 arrays with no element equal to exactly two horizontal and vertical neighbors, with new values 0..1 introduced in row major order.

Original entry on oeis.org

13, 42, 196, 1080, 6205, 37624, 231665, 1440880, 9082172, 57688194, 368247913, 2360899744, 15185317117, 97900171826, 632299574804, 4089240246144, 26472263944273, 171499150683304, 1111664911286921, 7208828328348392
Offset: 1

Views

Author

R. H. Hardin, Apr 06 2014

Keywords

Comments

Column 6 of A240519

Examples

			Some solutions for n=4
..0..1..0..1..0..1....0..0..1..0..1..0....0..1..0..0..1..0....0..1..0..0..0..1
..1..0..1..0..0..0....1..1..1..0..1..1....0..1..1..1..1..1....1..0..1..0..1..0
..1..1..0..1..1..1....0..1..1..1..1..0....1..1..1..1..1..0....0..1..1..1..0..1
..1..0..1..0..1..0....1..1..1..1..1..1....0..0..1..0..1..0....1..0..1..0..0..0
		

A240518 Number of nX7 0..1 arrays with no element equal to exactly two horizontal and vertical neighbors, with new values 0..1 introduced in row major order.

Original entry on oeis.org

21, 86, 515, 3765, 28942, 231665, 1906245, 16000486, 135790448, 1158315893, 9946076742, 85823282205, 743139183617, 6451236349918, 56119492560507, 488978060398481, 4265874977466648, 37250999894755072, 325525391487428809
Offset: 1

Views

Author

R. H. Hardin, Apr 06 2014

Keywords

Comments

Column 7 of A240519

Examples

			Some solutions for n=4
..0..1..0..1..0..1..0....0..1..1..1..0..1..0....0..1..0..1..0..1..0
..0..1..0..1..0..1..0....1..0..1..0..1..1..1....1..0..1..1..0..0..1
..1..0..1..0..1..0..1....0..1..0..1..0..1..0....0..0..0..1..0..1..1
..0..1..1..1..0..1..0....1..1..1..0..1..0..1....1..0..1..0..1..0..1
		

A240512 Number of n X n 0..1 arrays with no element equal to exactly two horizontal and vertical neighbors, with new values 0..1 introduced in row major order.

Original entry on oeis.org

1, 3, 10, 99, 1376, 37624, 1906245, 180760099, 31517059634, 10196460883584
Offset: 1

Views

Author

R. H. Hardin, Apr 06 2014

Keywords

Comments

Diagonal of A240519.

Examples

			Some solutions for n=4
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..1..1....0..1..0..1
..1..0..1..0....0..1..1..0....1..1..1..0....0..0..1..0....1..1..0..0
..0..1..0..1....1..1..0..1....0..0..0..1....0..1..0..1....0..1..0..1
..1..0..1..0....0..1..0..1....1..0..1..0....1..0..1..0....1..0..1..0
		

Crossrefs

Cf. A240519.
Showing 1-7 of 7 results.