cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A105309 a(n) = |b(n)|^2 = x^2 + 3*y^2 where (x,y,y,y) is the quaternion b(n) of the sequence b of quaternions defined by b(0)=1,b(1)=1, b(n) = b(n-1) + b(n-2)*(0,c,c,c) where c = 1/sqrt(3).

Original entry on oeis.org

1, 1, 2, 5, 9, 20, 41, 85, 178, 369, 769, 1600, 3329, 6929, 14418, 30005, 62441, 129940, 270409, 562725, 1171042, 2436961, 5071361, 10553600, 21962241, 45703841, 95110562, 197926885, 411889609, 857150100, 1783745641, 3712008565
Offset: 0

Views

Author

Gerald McGarvey, Apr 25 2005

Keywords

Comments

Prepending 0 and keeping the offset at 0, turns this into a divisibility sequence with g.f. x(1-x^2)/(1-x-2x^2-x^3+x^4). - T. D. Noe, Dec 22 2008
Equals INVERT transform of (1, 1, 2, 0, 2, 0, 2, ...). - Gary W. Adamson, Apr 28 2009
Sequence gives the norm of the coefficients in 1/(1 - I*x - I*x^2), where I^2=-1. - Paul D. Hanna, Dec 06 2011
This is the case P1 = 1, P2 = -4, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 27 2014

Examples

			G.f. = 1 + x + 2*x^2 + 5*x^3 + 9*x^4 + 20*x^5 + 41*x^6 + 85*x^7 + 178*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := (ChebyshevT[n + 1, (1 + Sqrt[17])/4] - ChebyshevT[n + 1, (1 - Sqrt[17])/4]) 2 / Sqrt[17] // Simplify; (* Michael Somos, Dec 20 2016 *)
  • PARI
    {a(n) = my(A); n = abs(n+1)-1; if( n<2, n>=0, n++; A = vector(n, i, 1); for(i=3, n, A[i] = A[i-1] + A[i-2]*I); norm(A[n]))}; /* Michael Somos, Apr 28 2005 */
    
  • PARI
    {a(n)=norm(polcoeff(1/(1-I*x-I*x^2+x*O(x^n)), n))} /* Paul D. Hanna */
    
  • PARI
    {a(n)=polcoeff((1-x^2)/(1-x-2*x^2-x^3+x^4)+x*O(x^n),n)}

Formula

a(n) = A092886(n+1) - A092886(n-1), n > 0.
a(n) = A201837(n)^2 + A201838(n)^2. - Paul D. Hanna, Dec 06 2011
From Peter Bala, Mar 27 2014: (Start)
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = (1 + sqrt(17))/4 and beta = (1 - sqrt(17))/4 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 1; 1, 1/2].
a(n) = U(n-1,(1 + i)/sqrt(8))*U(n-1,(1 - i)/sqrt(8)), where U(n,x) denotes the Chebyshev polynomial of the second kind.
The o.g.f. is the Chebyshev transform of the rational function x/(1 - x + 4*x^2) = x + x^2 + 5*x^2 + 9*x^4 + 29*x^5 + ... (see A006131), where the Chebyshev transform takes the function A(x) to the function (1 - x^2)/(1 + x^2)*A(x/(1 + x^2)).
See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)
a(n) = abs(((sqrt(4*i - 1) + i)^(n+1) - (i - sqrt(4*i - 1))^(n+1)) / 2^(n+1) / sqrt(4*i - 1))^2. - Daniel Suteu, Dec 20 2016
a(n) = a(-2-n) for all n in Z. - Michael Somos, Dec 20 2016
G.f.: (1+x)*(1-x)/(1-x-2*x^2-x^3+x^4). - R. J. Mathar, Apr 26 2024

A302163 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1 or 3 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 9, 6, 8, 8, 17, 7, 10, 16, 13, 25, 12, 17, 21, 32, 21, 65, 20, 29, 31, 42, 64, 34, 185, 34, 51, 73, 57, 86, 128, 55, 385, 56, 109, 140, 156, 111, 179, 256, 89, 649, 94, 206, 296, 280, 361, 265, 370, 512, 144, 1489, 156, 407, 603, 635, 621, 865, 527, 770
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2018

Keywords

Comments

Table starts
...1...2...3....5....8...13....21....34....55.....89....144.....233.....377
...2...3...9...17...25...65...185...385...649...1489...3929....8609...15913
...4...6...7...12...20...34....56....94...156....262....436.....730....1216
...8..10..17...29...51..109...206...407...791...1584...3104....6165...12131
..16..21..31...73..140..296...603..1288..2584...5456..11189...23561...48423
..32..42..57..156..280..635..1247..2815..5524..12457..25230...55645..113410
..64..86.111..361..621.1563..2853..7306.12963..33522..61775..157788..293072
.128.179.265..865.1451.3948..6870.19993.32005.100147.163475..531350..820788
.256.370.527.1970.3189.9405.15489.50691.75825.282597.409385.1667452.2263018

Examples

			Some solutions for n=5 k=4
..0..1..1..0. .0..1..0..1. .0..1..0..1. .0..0..1..1. .0..1..1..0
..0..1..0..1. .0..1..0..1. .1..0..0..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .0..1..0..1. .1..0..1..0. .0..1..0..1. .0..1..0..1
..0..1..0..0. .0..1..0..1. .1..0..1..0. .0..1..1..0. .1..1..0..0
..0..1..0..1. .1..0..0..1. .1..0..1..0. .1..0..1..0. .0..1..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A240513.
Row 1 is A000045(n+1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: a(n) = a(n-1) +8*a(n-3) -6*a(n-4) -4*a(n-6) +4*a(n-7) for n>11
k=4: [order 15] for n>19
k=5: [order 12] for n>15
k=6: [order 15] for n>26
k=7: [order 27] for n>39
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +16*a(n-4) -8*a(n-5) for n>6
n=3: a(n) = a(n-1) +a(n-2) -a(n-3) +2*a(n-4) for n>6
n=4: [order 22] for n>23
n=5: [order 36] for n>40
n=6: [order 35] for n>45
n=7: [order 80] for n>89

A302309 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 11, 6, 8, 8, 21, 13, 10, 16, 13, 31, 26, 33, 21, 32, 21, 113, 48, 66, 58, 42, 64, 34, 363, 121, 194, 153, 153, 86, 128, 55, 813, 275, 663, 445, 380, 336, 179, 256, 89, 1751, 600, 2048, 1595, 1271, 1090, 937, 370, 512, 144, 5001, 1296, 5790, 4772, 5715
Offset: 1

Views

Author

R. H. Hardin, Apr 05 2018

Keywords

Comments

Table starts
...1...2....3....5.....8.....13......21.......34........55.........89
...2...3...11...21....31....113.....363......813......1751.......5001
...4...6...13...26....48....121.....275......600......1296.......2998
...8..10...33...66...194....663....2048.....5790.....17761......58980
..16..21...58..153...445...1595....4772....15249.....49634.....166329
..32..42..153..380..1271...5715...18992....70289....276303....1198933
..64..86..336.1090..3915..18990...76642...360898...1695748....9408402
.128.179..937.3120.12420..73663..364922..2150420..13123505...95790405
.256.370.2449.9130.42897.312122.1991487.15392485.124691962.1235540899

Examples

			Some solutions for n=5 k=4
..0..1..0..1. .0..0..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..0..0. .0..1..0..1. .0..1..1..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .0..1..0..1. .0..0..0..0. .1..0..0..1. .1..1..0..0
..0..1..0..1. .0..1..0..1. .1..1..1..0. .1..0..1..0. .0..1..0..1
..0..1..1..1. .0..1..1..1. .1..0..1..0. .1..0..1..0. .0..1..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A240513.
Row 1 is A000045(n+1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 13] for n>16
k=4: [order 60] for n>61
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 2*a(n-1) -a(n-2) +4*a(n-3) +12*a(n-4) -16*a(n-5) for n>6
n=3: [order 15] for n>16
n=4: [order 61] for n>64

A302367 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3 or 4 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 12, 2, 8, 1, 20, 31, 3, 16, 1, 72, 20, 109, 6, 32, 1, 168, 154, 77, 397, 10, 64, 1, 496, 284, 918, 209, 1430, 21, 128, 1, 1296, 1109, 3125, 6580, 774, 5110, 42, 256, 1, 3616, 3472, 21831, 26458, 49293, 3143, 18395, 86, 512, 1, 9760, 12763, 125193
Offset: 1

Views

Author

R. H. Hardin, Apr 06 2018

Keywords

Comments

Table starts
...1..1.....1.....1........1.........1...........1.............1
...2..2....12....20.......72.......168.........496..........1296
...4..2....31....20......154.......284........1109..........3472
...8..3...109....77......918......3125.......21831........125193
..16..6...397...209.....6580.....26458......405340.......3462040
..32.10..1430...774....49293....330505.....9361759.....134269527
..64.21..5110..3143...367512...3858625...188443738....4558781926
.128.42.18395.13556..2856621..48375470..4174802035..169314399506
.256.86.66203.60280.22185382.608124211.91302504318.6186362081201

Examples

			Some solutions for n=5 k=4
..0..1..1..0. .0..1..1..0. .0..0..1..0. .0..0..1..1. .0..1..1..0
..1..1..1..1. .0..1..1..0. .0..0..1..0. .0..0..1..1. .1..1..1..1
..0..1..0..0. .1..1..1..1. .0..1..1..1. .0..1..1..0. .1..1..0..0
..0..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1. .1..1..0..0
..0..1..0..0. .0..0..0..1. .1..0..0..1. .0..0..1..1. .1..1..0..0
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A240513(n-2).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 12]
k=4: [order 50] for n>53
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 2*a(n-1) +4*a(n-2) -4*a(n-3) -4*a(n-4)
n=3: [order 16] for n>18
n=4: [order 63] for n>66

A302212 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2 or 3 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 11, 2, 8, 1, 13, 16, 3, 16, 1, 34, 5, 47, 6, 32, 1, 65, 32, 7, 147, 10, 64, 1, 123, 22, 111, 18, 386, 21, 128, 1, 266, 72, 80, 448, 55, 1065, 42, 256, 1, 499, 101, 424, 281, 1725, 172, 3063, 86, 512, 1, 1037, 216, 1157, 1868, 1395, 6423, 575, 8624, 179
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2018

Keywords

Comments

Table starts
...1..1....1....1.....1......1.......1........1........1..........1...........1
...2..2...11...13....34.....65.....123......266......499.......1037........2042
...4..2...16....5....32.....22......72......101......216........486.........968
...8..3...47....7...111.....80.....424.....1157.....2922......12816.......33744
..16..6..147...18...448....281....1868.....6036....16344.....110672......332791
..32.10..386...55..1725...1395...11170....46215...142804....1296927.....3754619
..64.21.1065..172..6423...8756...55922...465040..1136003...19265064....60547641
.128.42.3063..575.24927..43128..291320..3509969..9080114..212347228...786789878
.256.86.8624.1962.96909.234170.1544411.29343177.73189971.2698247985.11028726211

Examples

			Some solutions for n=5 k=4
..0..1..0..0. .0..1..0..0. .0..0..1..0. .0..1..0..0. .0..0..1..1
..0..1..0..0. .0..1..0..0. .0..0..1..0. .0..1..0..0. .0..0..1..1
..1..1..1..0. .1..1..1..1. .1..1..1..1. .0..1..0..1. .0..1..1..0
..0..1..0..0. .0..0..1..0. .0..1..0..0. .0..1..0..0. .0..0..1..1
..0..1..0..0. .0..0..1..0. .0..1..0..0. .0..1..0..0. .0..0..1..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A240513(n-2).
Row 2 is A297870(n+2).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 9]
k=4: [order 28] for n>32
k=5: [order 37] for n>41
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = a(n-1) +3*a(n-2) -4*a(n-4) for n>5
n=3: [order 19] for n>20
n=4: [order 61] for n>62

A302427 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 9, 6, 8, 8, 17, 11, 10, 16, 13, 25, 21, 21, 21, 32, 21, 65, 38, 42, 51, 42, 64, 34, 185, 88, 83, 148, 93, 86, 128, 55, 385, 188, 235, 372, 362, 207, 179, 256, 89, 649, 377, 532, 1359, 992, 879, 517, 370, 512, 144, 1489, 735, 1250, 4223, 4231, 2503, 2447
Offset: 1

Views

Author

R. H. Hardin, Apr 07 2018

Keywords

Comments

Table starts
...1...2....3....5.....8.....13.....21......34.......55........89........144
...2...3....9...17....25.....65....185.....385......649......1489.......3929
...4...6...11...21....38.....88....188.....377......735......1557.......3288
...8..10...21...42....83....235....532....1250.....2839......6972......16274
..16..21...51..148...372...1359...4223...12765....36991....120577.....379049
..32..42...93..362...992...4231..14764...53851...182216....685166....2496115
..64..86..207..879..2503..12527..48037..204549...775916...3358602...13687791
.128.179..517.2447..7611..49454.227283.1171867..5110314..27366139..134037982
.256.370.1007.6306.21321.179252.940829.6104653.30957683.207165078.1213329113

Examples

			Some solutions for n=5 k=4
..0..0..1..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .0..1..0..1. .1..1..0..1. .0..1..0..0. .1..1..0..1
..0..1..0..1. .0..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
..1..0..0..1. .1..0..1..0. .0..1..0..1. .1..1..0..1. .0..1..0..0
..1..0..1..0. .1..0..1..0. .0..1..1..0. .0..1..0..1. .0..1..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A240513.
Row 1 is A000045(n+1).
Row 2 is A302164.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: a(n) = a(n-1) +10*a(n-3) -8*a(n-4) for n>9
k=4: [order 42] for n>43
k=5: [order 21] for n>24
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +16*a(n-4) -8*a(n-5) for n>6
n=3: [order 18] for n>19
n=4: [order 68] for n>69

A302460 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 11, 2, 8, 1, 13, 18, 3, 16, 1, 34, 8, 55, 6, 32, 1, 65, 44, 10, 177, 10, 64, 1, 123, 56, 233, 54, 474, 21, 128, 1, 266, 140, 123, 924, 111, 1397, 42, 256, 1, 499, 364, 1518, 1096, 3875, 276, 4135, 86, 512, 1, 1037, 764, 2945, 8869, 5266, 17189, 1050
Offset: 1

Views

Author

R. H. Hardin, Apr 08 2018

Keywords

Comments

Table starts
...1..1.....1....1......1......1........1.........1..........1...........1
...2..2....11...13.....34.....65......123.......266........499........1037
...4..2....18....8.....44.....56......140.......364........764........2352
...8..3....55...10....233....123.....1518......2945......16711.......58462
..16..6...177...54....924...1096.....8869.....29770.....176077......900973
..32.10...474..111...3875...5266....61254....287294....2165323....15547748
..64.21..1397..276..17189..25285...404761...2588958...25019102...250630168
.128.42..4135.1050..72529.149381..2822737..26036557..322917567..4472928245
.256.86.11882.3589.300519.866961.19107381.258817075.4110999261.79010238897

Examples

			Some solutions for n=5 k=4
..0..0..1..1. .0..1..1..1. .0..1..0..1. .0..1..1..0. .0..0..1..0
..0..0..1..1. .1..1..1..0. .0..1..0..1. .0..1..1..1. .0..0..1..0
..0..0..1..1. .1..1..1..1. .0..1..0..1. .1..1..0..1. .1..0..1..0
..1..1..0..0. .0..1..1..1. .0..1..0..1. .0..1..1..1. .0..0..1..0
..1..1..0..0. .1..1..1..0. .0..1..0..1. .0..1..1..0. .0..0..1..0
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A240513(n-2).
Row 2 is A297870(n+2).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 12]
k=4: [order 71] for n>72
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = a(n-1) +3*a(n-2) -4*a(n-4) for n>5
n=3: [order 19] for n>20
n=4: [order 71] for n>72

A302635 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 3 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 9, 6, 8, 8, 17, 8, 10, 16, 13, 25, 14, 19, 21, 32, 21, 65, 25, 33, 42, 42, 64, 34, 185, 47, 65, 101, 82, 86, 128, 55, 385, 83, 149, 257, 248, 189, 179, 256, 89, 649, 150, 304, 691, 719, 657, 469, 370, 512, 144, 1489, 269, 643, 1734, 2262, 2303, 1841, 1029
Offset: 1

Views

Author

R. H. Hardin, Apr 10 2018

Keywords

Comments

Table starts
...1...2....3....5.....8.....13.....21......34.......55.......89.......144
...2...3....9...17....25.....65....185.....385......649.....1489......3929
...4...6....8...14....25.....47.....83.....150......269......488.......876
...8..10...19...33....65....149....304.....643.....1343.....2880......6038
..16..21...42..101...257....691...1734....4502....11524....30121.....77399
..32..42...82..248...719...2262...6460...19799....59002...179668....535412
..64..86..189..657..2303...8981..30216..112431...408512..1512824...5441957
.128.179..469.1841..7695..35772.144266..652931..2863575.12800635..55765517
.256.370.1029.4892.24205.135125.642553.3499587.18446157.98898783.515558643

Examples

			Some solutions for n=5 k=4
..0..0..1..0. .0..1..0..1. .0..1..0..1. .0..0..1..1. .0..1..0..1
..1..1..1..0. .0..1..0..1. .0..1..0..0. .0..1..0..1. .0..0..0..1
..0..0..0..0. .0..1..1..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..1..1. .0..1..0..1. .0..0..1..0. .0..1..0..1. .0..1..0..1
..0..1..0..0. .0..1..0..1. .1..1..1..0. .0..0..1..1. .0..1..1..0
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A240513.
Row 1 is A000045(n+1).
Row 2 is A302164.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: a(n) = a(n-1) +9*a(n-3) -4*a(n-4) +2*a(n-5) -10*a(n-6) +4*a(n-7) +4*a(n-9) for n>13
k=4: [order 21] for n>25
k=5: [order 29] for n>32
k=6: [order 54] for n>65
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +16*a(n-4) -8*a(n-5) for n>6
n=3: a(n) = a(n-1) +a(n-2) +2*a(n-4) -a(n-5) for n>7
n=4: [order 22] for n>23
n=5: [order 63] for n>64
n=6: [order 81] for n>86

A302877 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 11, 6, 8, 8, 21, 17, 10, 16, 13, 31, 35, 37, 21, 32, 21, 113, 72, 95, 82, 42, 64, 34, 363, 241, 306, 285, 209, 86, 128, 55, 813, 722, 1442, 1197, 858, 536, 179, 256, 89, 1751, 1821, 5871, 7580, 4849, 2938, 1549, 370, 512, 144, 5001, 4863, 21832, 41498
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2018

Keywords

Comments

Table starts
...1...2....3.....5......8.......13........21..........34...........55
...2...3...11....21.....31......113.......363.........813.........1751
...4...6...17....35.....72......241.......722........1821.........4863
...8..10...37....95....306.....1442......5871.......21832........89400
..16..21...82...285...1197.....7580.....41498......224087......1300510
..32..42..209...858...4849....45897....359518.....2795440.....24612087
..64..86..536..2938..23037...320405...3780984....44148194....588417750
.128.179.1549.11126.114810..2489823..44888558...786125894..15974455418
.256.370.4513.44216.603229.20679119.569313013.14827387374.460770487307

Examples

			Some solutions for n=5 k=4
..0..1..1..0. .0..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..1..1
..1..0..1..0. .1..1..1..0. .0..1..0..1. .0..1..1..0. .0..1..0..1
..1..0..1..0. .1..0..1..0. .0..1..0..1. .1..1..1..1. .0..1..0..1
..1..0..1..0. .1..0..1..0. .0..1..0..1. .0..1..1..0. .0..0..0..1
..1..1..0..0. .1..0..0..1. .0..1..0..1. .1..0..1..0. .1..1..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A240513.
Row 1 is A000045(n+1).
Row 2 is A302310.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 13] for n>16
k=4: [order 56] for n>59
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 2*a(n-1) -a(n-2) +4*a(n-3) +12*a(n-4) -16*a(n-5) for n>6
n=3: [order 20] for n>21
n=4: [order 60] for n>64

A302889 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 12, 2, 8, 1, 20, 37, 3, 16, 1, 72, 53, 141, 6, 32, 1, 168, 197, 238, 569, 10, 64, 1, 496, 818, 2278, 1102, 2262, 21, 128, 1, 1296, 2548, 12782, 20937, 5570, 8968, 42, 256, 1, 3616, 10926, 98458, 200186, 206332, 28594, 35667, 86, 512, 1, 9760, 42671
Offset: 1

Views

Author

R. H. Hardin, Apr 15 2018

Keywords

Comments

Table starts
...1..1......1......1.........1...........1.............1...............1
...2..2.....12.....20........72.........168...........496............1296
...4..2.....37.....53.......197.........818..........2548...........10926
...8..3....141....238......2278.......12782.........98458..........714934
..16..6....569...1102.....20937......200186.......2727690........37626360
..32.10...2262...5570....206332.....3452246......89290791......2247650354
..64.21...8968..28594...2059835....60501563....2899297652....133518102376
.128.42..35667.149206..20622709..1073161270...94799190457...7977498513759
.256.86.141839.788373.206851726.19073141368.3098646840396.476377988322833

Examples

			Some solutions for n=5 k=4
..0..1..1..0. .0..1..1..1. .0..1..1..0. .0..0..0..0. .0..1..1..0
..1..1..1..0. .1..1..1..0. .0..1..1..0. .1..0..0..1. .0..1..1..1
..0..1..1..0. .0..1..1..0. .0..1..1..1. .1..0..0..1. .0..1..1..1
..0..1..1..0. .0..1..1..1. .1..1..1..0. .0..0..0..0. .1..1..1..0
..0..1..1..1. .0..1..1..0. .0..1..1..1. .0..0..0..1. .1..1..1..0
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A240513(n-2).
Row 2 is A302368.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 10]
k=4: [order 35] for n>37
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 2*a(n-1) +4*a(n-2) -4*a(n-3) -4*a(n-4)
n=3: [order 16] for n>17
n=4: [order 51] for n>54
Showing 1-10 of 22 results. Next