cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240572 a(n) = floor(4^n/(2 + sqrt(2))^n).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 7, 9, 10, 12, 14, 17, 20, 23, 27, 32, 38, 44, 52, 61, 71, 84, 98, 115, 135, 158, 185, 217, 255, 299, 350, 410, 480, 563, 659, 773, 905, 1061, 1243, 1456, 1706, 1999, 2342, 2744, 3215, 3767, 4413, 5170, 6057, 7097, 8314
Offset: 0

Views

Author

Kival Ngaokrajang, Apr 08 2014

Keywords

Comments

a(n) is the perimeter (rounded down) of octaflake after n iterations, let a(0) = 1. The total number of sides is 8*A000302(n). The total number of holes is A084990(A000225(n)). sqrt(2) = A002193.

Crossrefs

Cf. A000302, A084990, A000225, A002193. A240523 (pentaflake), A240671 (heptaflake), A240733 (nonaflake), A240734 (decaflake), A230735 (dodecaflake).

Programs

  • Maple
    A240572:=n->floor(4^n/(2 + sqrt(2))^n); seq(A240572(n), n=0..50); # Wesley Ivan Hurt, Apr 12 2014
  • Mathematica
    Table[Floor[4^n/(2 + Sqrt[2])^n], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 12 2014 *)
  • PARI
    {a(n)=floor(4^n/(2 + sqrt(2))^n)}
           for (n=0, 100, print1(a(n), ", "))