A240588 a(1) = 1, a(2) = 2; for n >= 3, a(n) = least number not included earlier that divides the concatenation of all previous terms.
1, 2, 3, 41, 7, 9, 137131, 61, 2023244487101, 13, 19, 11, 143, 142733, 21, 17, 193, 37, 3907, 1290366811360047359, 1805030483980039, 3803623, 123, 369, 27, 23, 58271, 47609, 523, 79, 307, 179, 73, 57, 18032419296851, 29, 31, 3281881401611107, 69, 171, 60244474373, 197, 97
Offset: 1
Examples
a(1)=1 and a(2)=2. a(1) U a(2) = 12 and its divisors are 1, 2, 3, 4, 6, 12. Therefore 3 is the least number not yet present in the sequence which divides 12. Again, a(1) U a(2) U a(3) = 123 and its divisors are 1, 3, 41, 123. Therefore a(4)=41. Etc.
Links
- Scott R. Shannon, Table of n, a(n) for n = 1..130.
Programs
-
Maple
with(numtheory): T:=proc(t) local x, y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end: P:=proc(q) local a,b,c,k,n; b:=12; print(1); print(2); c:=[1,2]; for n from 1 to q do a:=sort([op(divisors(b))]); for k from 2 to nops(a) do if not member(a[k],c) then c:=[op(c),a[k]]; b:=a[k]+b*10^T(a[k]); print(a[k]); break; fi; od; od; end: P(19);
-
Mathematica
a = {1, 2}; While[Length[a] < 22, n = ToExpression[StringJoin[ToString /@ a]]; AppendTo[a, SelectFirst[Sort[Divisors[n]], FreeQ[a, #] &]] ]; a
Extensions
a(20)-a(40) from Alois P. Heinz, May 08 2014
a(22) corrected by Ryan Hitchman, Sep 14 2017
a(23)-a(25) from Robert Price, May 16 2019
a(23)-a(25) corrected, and a(26)-a(43) added by Scott R. Shannon, Dec 10 2019
Comments