A240595 Look-and-Say table, where in row(n+1) the sorted list of distinct terms of row(n) is preceded by the list of numbers of their occurrences.
1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 2, 2, 2, 1, 2, 3, 1, 4, 1, 1, 2, 3, 3, 1, 1, 1, 1, 2, 3, 4, 4, 1, 2, 1, 1, 2, 3, 4, 3, 2, 1, 2, 1, 2, 3, 4, 2, 3, 2, 1, 1, 2, 3, 4, 2, 3, 2, 1, 1, 2, 3, 4, 2, 3, 2, 1, 1, 2, 3, 4, 2
Offset: 1
Examples
. 1: [1] -> 1x1 -> [1 | 1] -> row(2) . 2: [1,1] -> 2x1 -> [2 | 1] -> row(3) . 3: [2,1] -> 1x1, 1x2 -> [1,1 | 1,2] -> row(4) . 4: [1,1,1,2] -> 3x1, 1x2 -> [3,1 | 1,2] -> row(5) . 5: [3,1,1,2] -> 2x1, 1x2, 1x3 -> [2,1,1 | 1,2,3] -> row(6) . 6: [2,1,1,1,2,3] -> 3x1, 2x2, 1x3 -> [3,2,1 | 1,2,3] -> row(7) . 7: [3,2,1,1,2,3] -> 2x1, 2x2, 2x3 -> [2,2,2 | 1,2,3] -> row(8) . 8: [2,2,2,1,2,3] -> 1x1, 4x2, 1x3 -> [1,4,1 | 1,2,3] -> row(9) . 9: [1,4,1,1,2,3] -> 3x1, 1x2, 1x3, 1x4 -> [3,1,1,1 | 1,2,3] -> row(10) . 10: [3,1,1,1,1,2,3,4] -> 4x1, 1x2, 2x3, 1x4 -> [4,1,2,1 | 1,2,3,4] . 11: [4,1,2,1,1,2,3,4] -> 3x1, 2x2, 1x3, 2x4 -> [3,2,1,2 | 1,2,3,4] . 12: [3,2,1,2,1,2,3,4] -> 2x1, 3x2, 2x3, 1x4 -> [2,3,2,1 | 1,2,3,4] . 13: [2,3,2,1,1,2,3,4] -> 2x1, 3x2, 2x3, 1x4 -> [2,3,2,1 | 1,2,3,4] . 14: [2,3,2,1,1,2,3,4] = row(13).
Links
- Eric Weisstein's World of Mathematics, Look and Say Sequence
- Wikipedia, Look-and-say sequence
Crossrefs
Cf. A034002.
Programs
-
Haskell
import Data.List (sort, group) a240595 n k = a240595_tabf !! (n-1) !! (k-1) a240595_row n = a240595_tabf !! (n-1) a240595_tabf = iterate f [1] where f xs = concat [map length zss, map head zss] where zss = group $ sort xs
Comments