A240606 Let the prime factorization of (2*n)! be 2^e_1*3^e_2*5^e_3*...; then a(n) = maximal k such that e_1, ..., e_k are all even.
0, 0, 2, 0, 3, 1, 0, 0, 2, 4, 0, 3, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 1, 5, 0, 0, 6, 0, 1, 3, 0, 0, 1, 1, 0, 3, 0, 0, 4, 2, 0, 0, 1, 0, 2, 2, 0, 5, 0, 0, 1, 0, 2, 1, 0, 0, 1, 1, 0, 3, 0, 0, 1, 0, 6, 1, 0, 2, 0, 0, 4, 5, 0, 0, 2
Offset: 1
Keywords
Examples
(2*10)! = 2432902008176640000 = 2^18 * 3^8 * 5^4 * 7^2 * 11 * 13 * 17 * 19, and the first 4 exponents are even, so a(10) = 4.
References
- P. Erdős, P. L. Graham, Old and new problems and results in combinatorial number theory, L'Enseignement Mathematique, Imprimerie Kunding, Geneva, 1980.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- D. Berend, Parity of exponents in the factorization of n!, J. Number Theory, 64 (1997), 13-19.
- Y.-G. Chen, On the parity of exponents in the standard factorization of n!, J. Number Theory, 100 (2003), 326-331.
Crossrefs
Cf. A240537.
Programs
-
Mathematica
Map[Count[First[Split[Mod[Last[Transpose[FactorInteger[(2*#)!]]],2]]],0]&,Range[75]] (* Peter J. C. Moses, Apr 09 2014 *)
-
PARI
fv(n,p)=my(s); while(n\=p, s+=n); s a(n)=n*=2; my(s); forprime(p=2,,if(fv(n,p)%2, return(s), s++)) \\ Charles R Greathouse IV, Apr 09 2014
-
Sage
def a(n): f = list(factor(factorial(2*n))) c = -1 for pf in f: c = c + 1 if pf[1] % 2: return c # Ralf Stephan, Apr 09 2014
Extensions
More terms and example from Ralf Stephan, Apr 09 2014
Comments