A240609 Number of n-length words w over a 3-ary alphabet such that w is empty or a prefix z concatenated with letter a_i and i=1 or 0 < #(z,a_{i-1}) >= #(z,a_i), where #(z,a_i) counts the occurrences of the i-th letter in z.
1, 1, 2, 5, 13, 35, 94, 254, 688, 1872, 5115, 14038, 38689, 107055, 297336, 828699, 2317098, 6498114, 18273861, 51521238, 145604868, 412407942, 1170507375, 3328570513, 9482518041, 27059673745, 77340925350, 221382318131, 634578781229, 1821388557507
Offset: 0
Keywords
Examples
a(3) = 5: 111, 112, 121, 122, 123. a(4) = 13: 1111, 1112, 1121, 1122, 1123, 1211, 1212, 1213, 1221, 1223, 1231, 1232, 1233. a(5) = 35: 11111, 11112, 11121, 11122, 11123, 11211, 11212, 11213, 11221, 11222, 11223, 11231, 11232, 11233, 12111, 12112, 12113, 12121, 12122, 12123, 12131, 12132, 12133, 12211, 12212, 12213, 12231, 12233, 12311, 12312, 12313, 12321, 12323, 12331, 12332.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Column k=3 of A240608.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, [1, 1, 2][n+1], ((87*n^5-380*n^4-95*n^3+848*n^2-76*n+96) *a(n-1) +(n-1)*(29*n^4-117*n^3+228*n^2+404*n-528) *a(n-2) -3*(n-1)*(n-2)*(29*n^3-59*n^2-34*n-96) *a(n-3))/ ((n-2)*(n+4)*(29*n^3-146*n^2+171*n-150))) end: seq(a(n), n=0..35);
-
Mathematica
b[n_, k_, l_] := b[n, k, l] = If[n == 0, 1, If[Length[l] < k, b[n - 1, k, Append[l, 1]], 0] + Sum[If[i == 1 || l[[i]] <= l[[i - 1]], b[n - 1, k, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; a[n_] := b[n, Min[3, n], {}]; a /@ Range[0, 35] (* Jean-François Alcover, Jan 03 2021, after Alois P. Heinz in A240608 *)
Formula
a(n) ~ 29 * 3^(n+3/2) / (16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jul 16 2014