cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A240625 Number of nX2 0..3 arrays with no element equal to exactly two horizontal and vertical neighbors, with new values 0..3 introduced in row major order.

Original entry on oeis.org

2, 10, 109, 1332, 16624, 208015, 2604059, 32601488, 408158709, 5110007540, 63975568178, 800952543871, 10027655890879, 125542872147582, 1571754448134085, 19677835970041564, 246359874423207164
Offset: 1

Views

Author

R. H. Hardin, Apr 09 2014

Keywords

Comments

Column 2 of A240629

Examples

			Some solutions for n=4
..0..1....0..1....0..1....0..0....0..1....0..1....0..1....0..1....0..0....0..1
..0..0....1..0....2..2....1..2....0..2....2..3....2..2....2..0....1..2....0..2
..0..2....2..1....0..1....3..2....1..0....3..1....1..1....1..3....2..1....3..0
..3..3....2..3....0..1....3..1....3..3....0..0....2..0....1..2....3..3....2..3
		

Formula

Empirical: a(n) = 14*a(n-1) -14*a(n-2) -60*a(n-3) +29*a(n-4) +150*a(n-5) -47*a(n-6) -124*a(n-7) -4*a(n-8) +84*a(n-9) -27*a(n-10) for n>11

A240626 Number of nX3 0..3 arrays with no element equal to exactly two horizontal and vertical neighbors, with new values 0..3 introduced in row major order.

Original entry on oeis.org

4, 109, 4369, 180480, 7462748, 308596193, 12761076882, 527696013254, 21821286982448, 902353910690193, 37314141073241635, 1543014450929326860, 63806737265585893957, 2638536352033321770102, 109108761540671975977499
Offset: 1

Views

Author

R. H. Hardin, Apr 09 2014

Keywords

Comments

Column 3 of A240629

Examples

			Some solutions for n=4
..0..1..1....0..1..2....0..1..2....0..0..1....0..1..0....0..0..1....0..1..1
..0..2..3....0..1..2....0..2..1....1..2..2....1..2..3....2..1..1....0..2..0
..3..3..1....1..3..1....1..3..0....2..0..1....2..0..3....3..0..1....3..2..0
..0..1..0....1..0..2....1..2..2....1..2..3....1..1..0....0..1..0....3..0..3
		

Formula

Empirical: a(n) = 42*a(n-1) -20*a(n-2) -142*a(n-3) -5711*a(n-4) -3710*a(n-5) +80515*a(n-6) +372388*a(n-7) -2230154*a(n-8) +4624628*a(n-9) -9890649*a(n-10) +14198608*a(n-11) -3659227*a(n-12) -14748976*a(n-13) +83450532*a(n-14) -193948732*a(n-15) +312395335*a(n-16) -431237402*a(n-17) +231099273*a(n-18) +119705446*a(n-19) -536897174*a(n-20) +821278530*a(n-21) -566571559*a(n-22) +608221048*a(n-23) -508930511*a(n-24) +335483670*a(n-25) +83749796*a(n-26) -1224993018*a(n-27) +1081779799*a(n-28) -819999594*a(n-29) -208353027*a(n-30) +140757132*a(n-31) +622919226*a(n-32) +311776740*a(n-33) +25763409*a(n-34) +1679390712*a(n-35) -88064901*a(n-36) +41324256*a(n-37) +852316668*a(n-38) -80513676*a(n-39) -299431647*a(n-40) -419191038*a(n-41) -212845401*a(n-42) -113413446*a(n-43) -328430538*a(n-44) -226393866*a(n-45) -43046721*a(n-46)

A240627 Number of nX4 0..3 arrays with no element equal to exactly two horizontal and vertical neighbors, with new values 0..3 introduced in row major order.

Original entry on oeis.org

12, 1332, 180480, 24648700, 3367163455, 459961775083, 62832360051504, 8583108386132548, 1172481146489555199, 160164822767286567296, 21879047288760831684789, 2988750601081901561336772
Offset: 1

Views

Author

R. H. Hardin, Apr 09 2014

Keywords

Comments

Column 4 of A240629

Examples

			Some solutions for n=3
..0..1..0..2....0..0..0..1....0..1..0..1....0..0..1..2....0..1..0..1
..0..3..1..3....1..0..2..3....2..1..3..3....3..2..2..1....2..3..0..3
..3..0..2..3....0..1..1..2....3..3..1..1....2..3..0..3....2..0..1..2
		

A240628 Number of n X 5 0..3 arrays with no element equal to exactly two horizontal and vertical neighbors, with new values 0..3 introduced in row major order.

Original entry on oeis.org

40, 16624, 7462748, 3367163455, 1519699081714, 685854075788477, 309535605539765299, 139697630796640339536, 63047448929964784303613, 28454174772679454861874697, 12841757682871155282688313826, 5795660627332850278874835069098, 2615660794724892372200960575345057
Offset: 1

Views

Author

R. H. Hardin, Apr 09 2014

Keywords

Examples

			Some solutions for n=2:
..0..1..2..1..1....0..1..2..1..2....0..1..0..2..0....0..0..1..0..2
..0..1..2..0..3....3..1..0..2..1....2..2..0..1..3....3..2..3..3..2
		

Crossrefs

Column 5 of A240629.
Showing 1-4 of 4 results.