cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240649 T(n,k)=Number of nXk 0..1 arrays with no element equal to the same number of vertical neighbors as horizontal neighbors, with new values 0..1 introduced in row major order.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 6, 3, 3, 5, 6, 8, 8, 6, 5, 8, 10, 23, 18, 23, 10, 8, 13, 21, 60, 61, 61, 60, 21, 13, 21, 42, 149, 168, 232, 168, 149, 42, 21, 34, 86, 396, 526, 953, 953, 526, 396, 86, 34, 55, 179, 1050, 1643, 4343, 5304, 4343, 1643, 1050, 179, 55, 89, 370
Offset: 1

Views

Author

R. H. Hardin, Apr 09 2014

Keywords

Comments

Table starts
..0...1....1.....2......3.......5.........8.........13..........21...........34
..1...2....2.....3......6......10........21.........42..........86..........179
..1...2....6.....8.....23......60.......149........396........1050.........2814
..2...3....8....18.....61.....168.......526.......1643........5524........18762
..3...6...23....61....232.....953......4343......19458.......90165.......421048
..5..10...60...168....953....5304.....29481.....168320......990468......5920658
..8..21..149...526...4343...29481....227270....1748201....14230080....116070258
.13..42..396..1643..19458..168320...1748201...18030130...191002776...2052931147
.21..86.1050..5524..90165..990468..14230080..191002776..2764522654..39961388170
.34.179.2814.18762.421048.5920658.116070258.2052931147.39961388170.770199142784

Examples

			Some solutions for n=4 k=4
..0..0..0..1....0..0..0..0....0..1..0..0....0..0..1..1....0..0..0..0
..1..1..1..1....1..0..1..1....0..1..1..1....1..1..0..0....1..1..0..1
..0..1..0..1....1..0..0..0....0..1..0..0....0..0..1..1....0..0..0..1
..0..1..0..1....1..0..1..1....1..1..1..1....1..1..0..0....1..1..0..1
		

Crossrefs

Column 1 is A000045(n-1)
Column 2 is A240513(n-2)

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 20]
k=4: [order 48]