A240652 Number of nX4 0..1 arrays with no element equal to exactly one horizontal or vertical neighbor, with new values 0..1 introduced in row major order.
1, 3, 17, 91, 352, 1545, 7154, 33269, 154974, 724237, 3394852, 15935126, 74854028, 351802659, 1653966146, 7777530146, 36577083726, 172031838421, 809149353515, 3805931188358, 17901967673107, 84206433807963, 396088887787212
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0..1....0..0..0..0....0..1..1..1....0..1..1..0....0..0..0..0 ..0..0..0..0....0..0..0..0....1..1..0..1....1..1..1..1....0..0..0..0 ..1..0..0..0....0..0..0..0....1..0..1..1....1..1..0..1....1..1..0..0 ..0..1..0..0....1..0..0..1....1..1..1..0....0..1..1..1....1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 6*a(n-1) -5*a(n-2) +2*a(n-3) -17*a(n-4) -64*a(n-5) -92*a(n-6) +24*a(n-7) +159*a(n-8) +803*a(n-9) +1491*a(n-10) +1970*a(n-11) +1678*a(n-12) -661*a(n-13) -5546*a(n-14) -11953*a(n-15) -18840*a(n-16) -20162*a(n-17) -13954*a(n-18) +3124*a(n-19) +29982*a(n-20) +57408*a(n-21) +71870*a(n-22) +67778*a(n-23) +36825*a(n-24) -12790*a(n-25) -63687*a(n-26) -92941*a(n-27) -91422*a(n-28) -61244*a(n-29) -12245*a(n-30) +25219*a(n-31) +41068*a(n-32) +34422*a(n-33) +19986*a(n-34) +4392*a(n-35) -450*a(n-36) +906*a(n-37) +3453*a(n-38) +4580*a(n-39) +4351*a(n-40) +1645*a(n-41) -1495*a(n-42) -2735*a(n-43) -2047*a(n-44) -913*a(n-45) -160*a(n-46) +116*a(n-47) +114*a(n-48) +44*a(n-49) +8*a(n-50)
Comments