A240673 Triangle read by rows: T(n, k) = v(n, k)*((1/v(n, k)) mod prime(k)), where v(n, k) = (Product_{j=1..n} prime(j))/prime(k), n >= 1, 1 <= k <= n.
1, 3, 4, 15, 10, 6, 105, 70, 126, 120, 1155, 1540, 1386, 330, 210, 15015, 20020, 6006, 25740, 16380, 6930, 255255, 170170, 306306, 145860, 46410, 157080, 450450, 4849845, 3233230, 3879876, 8314020, 6172530, 3730650, 9129120, 9189180
Offset: 1
Examples
Triangle starts: 1; 3, 4; 15, 10, 6; 105, 70, 126, 120; 1155, 1540, 1386, 330, 210;
Links
- Matthias Schmitt, A function to calculate all relative prime numbers up to the product of the first n primes, arXiv:1404.0706 [math.NT] (see Example table on page 9).
- Ramin Zahedi, On algebraic structure of the set of prime numbers, arXiv:1209.3165 [math.GM], 2012.
- Ramin Zahedi, On a Deterministic Property of the Category of k-th Numbers: A Deterministic Structure Based on a Linear Function for Redefining the k-th Numbers in Certain Intervals, arXiv:1408.1888 [math.GM], 2014.
Programs
-
Maple
T := proc(n, k) v := mul(ithprime(j), j=1..n)/ithprime(k); v * ((1/v) mod ithprime(k)) end: seq(print(seq(T(n,k), k=1..n)), n=1..7); # Peter Luschny, Apr 12 2014
-
Mathematica
lift[Rational[1, n_], p_] := Module[{m}, m /. Solve[n*m == 1, m, Modulus -> p][[1]]]; lift[1, 2] = 1; v[n_, k_] := Product[Prime[j], {j, 1, n}]/Prime[k]; T[n_, k_] := v[n, k]*lift[1/v[n, k], Prime[k]]; Table[T[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 30 2017 *)
-
PARI
T(n, k) = {my(val = prod(j=1, n, prime(j))/prime(k)); val * lift(1/Mod(val, prime(k)));}
Formula
T(n, k) = v(n, k) * ((1/v(n, k)) mod prime(k)), where v(n, k) = Product_{j=1..n} prime(j)/prime(k).
Comments