A240674 Number of partitions p of n that are disjoint from their conjugate.
1, 0, 2, 2, 2, 2, 4, 4, 8, 10, 10, 14, 18, 18, 26, 30, 36, 44, 60, 64, 82, 96, 114, 130, 164, 176, 222, 248, 296, 338, 406, 450, 550, 620, 726, 816, 968, 1074, 1270, 1418, 1648, 1836, 2150, 2382, 2758, 3080, 3534, 3942, 4538, 5034, 5778, 6416, 7312, 8136, 9258
Offset: 0
Examples
a(6) counts these 4 partitions: 6, 33, 222, 111111, of which the respective conjugates are 111111, 222, 33, 6.
Programs
-
Mathematica
z = 30; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; c[p_] := c[p] = Table[Count[#, ?(# >= i &)], {i, First[#]}] &[p]; b[n] := b[n] = Table[Intersection[p[n, k], c[p[n, k]]], {k, 1, PartitionsP[n]}]; Table[Count[Map[Length, b[n]], 0], {n, 1, z}] (* this sequence *) Table[Count[Map[Length, b[n]], 1], {n, 1, z}] (* A240675 *)
Formula
a(n) = 2*A114701(n), for n >= 1.
Extensions
Name corrected by Clark Kimberling, Sep 28 2023
a(0)=1 prepended by Alois P. Heinz, Jul 19 2024
Comments