A240685 Number of forests with n labeled nodes and 8 trees.
1, 36, 990, 26070, 705375, 20151846, 614506893, 20073049425, 702495121185, 26300384653400, 1050925859466912, 44702294310795888, 2018603140944000000, 96508616036970572820, 4872478522317533107200, 259140537891648535707618, 14485018396686799073181696
Offset: 8
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..200
Programs
-
Maple
T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1, `if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)* T(n-j, m-1), j=1..n-m+1)))) end: a:= n-> T(n, 8): seq(a(n), n=8..30);
-
Mathematica
Table[n^(n-16) * (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^7 + 63*n^6 + 2135*n^5 + 49245*n^4 + 816256*n^3 + 9527868*n^2 + 71254800*n + 259459200)/645120,{n,8,25}] (* Vaclav Kotesovec, Sep 06 2014 *)
Formula
a(n) = n^(n-16) * (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(n^7 + 63*n^6 + 2135*n^5 + 49245*n^4 + 816256*n^3 + 9527868*n^2 + 71254800*n + 259459200)/645120. - Vaclav Kotesovec, Sep 06 2014