cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240691 Number of partitions p of n such that (# 1s in p) = (#1s in conjugate(p)).

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 1, 6, 2, 10, 4, 17, 7, 27, 14, 41, 25, 63, 42, 95, 70, 140, 113, 207, 176, 302, 272, 436, 411, 628, 610, 897, 897, 1270, 1303, 1791, 1869, 2509, 2661, 3492, 3753, 4838, 5249, 6665, 7294, 9130, 10066, 12453, 13799, 16902, 18815, 22831, 25511
Offset: 1

Views

Author

Clark Kimberling, Apr 11 2014

Keywords

Examples

			a(6) counts these 3 partitions:  33, 321, 222, of which the respective conjugates are 222, 321, 33.
		

Crossrefs

Programs

  • Mathematica
    z = 53; f[n_] := f[n] = IntegerPartitions[n]; c[p_] := Table[Count[#, _?(# >= i &)], {i, First[#]}] &[p];  (* conjugate of partition p *)
    Table[Count[f[n], p_ /; Count[p, 1] < Count[c[p], 1]], {n, 1, z}]  (* A240690 *)
    Table[Count[f[n], p_ /; Count[p, 1] <= Count[c[p], 1]], {n, 1, z}]  (* A240690(n+1) *)
    Table[Count[f[n], p_ /; Count[p, 1] == Count[c[p], 1]], {n, 1, z}] (* A240691 *)

Formula

a(n) = A240690(n+1) - A240690(n) for n >= 1.
a(n) + 2*A240690(n) = A000041(n) for n >= 1.
a(n) + a(n-1) = A002865(n) = A187219(n) = A085811(n+3), in all cases for n >= 2. - Omar E. Pol, Mar 07 2015
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi / (24*sqrt(2)*n^(3/2)). - Vaclav Kotesovec, Jun 02 2018