A240691 Number of partitions p of n such that (# 1s in p) = (#1s in conjugate(p)).
1, 0, 1, 1, 1, 3, 1, 6, 2, 10, 4, 17, 7, 27, 14, 41, 25, 63, 42, 95, 70, 140, 113, 207, 176, 302, 272, 436, 411, 628, 610, 897, 897, 1270, 1303, 1791, 1869, 2509, 2661, 3492, 3753, 4838, 5249, 6665, 7294, 9130, 10066, 12453, 13799, 16902, 18815, 22831, 25511
Offset: 1
Examples
a(6) counts these 3 partitions: 33, 321, 222, of which the respective conjugates are 222, 321, 33.
Programs
-
Mathematica
z = 53; f[n_] := f[n] = IntegerPartitions[n]; c[p_] := Table[Count[#, _?(# >= i &)], {i, First[#]}] &[p]; (* conjugate of partition p *) Table[Count[f[n], p_ /; Count[p, 1] < Count[c[p], 1]], {n, 1, z}] (* A240690 *) Table[Count[f[n], p_ /; Count[p, 1] <= Count[c[p], 1]], {n, 1, z}] (* A240690(n+1) *) Table[Count[f[n], p_ /; Count[p, 1] == Count[c[p], 1]], {n, 1, z}] (* A240691 *)
Formula
a(n) + a(n-1) = A002865(n) = A187219(n) = A085811(n+3), in all cases for n >= 2. - Omar E. Pol, Mar 07 2015
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi / (24*sqrt(2)*n^(3/2)). - Vaclav Kotesovec, Jun 02 2018