cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240693 Primes p such that p^10 + p^9 + p^8 + p^7 + p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 is prime.

Original entry on oeis.org

5, 17, 53, 137, 229, 389, 467, 619, 709, 787, 1091, 1103, 1213, 1249, 1433, 1459, 1601, 1993, 2029, 2039, 2087, 2089, 2393, 2687, 3217, 3299, 3529, 3547, 3691, 3793, 4019, 4091, 4099, 4231, 4507, 4561, 4679, 5351, 5399, 5471, 5521, 5581, 5669, 5783, 5813, 5861, 5939, 6247, 6841, 6899, 6961
Offset: 1

Views

Author

Derek Orr, Apr 10 2014

Keywords

Comments

These are the primes in A162862.

Examples

			5^10 + 5^9 + 5^8 + 5^7 + 5^6 + 5^5 + 5^4 + 5^3 + 5^2 + 5 + 1 = 12207031 is prime. Thus, 5 is a term of this sequence.
		

Crossrefs

Cf. A162862.

Programs

  • Mathematica
    Select[Prime[Range[200]], PrimeQ[1 + Sum[#^i, {i, 10}]] &] (* Alonso del Arte, Apr 11 2014 *)
    Select[Prime[Range[900]],PrimeQ[Total[#^Range[0,10]]]&] (* Harvey P. Dale, Oct 11 2023 *)
  • PARI
    for(n=1,10^4,if(ispseudoprime(n^10+n^9+n^8+n^7+n^6+n^5+n^4+n^3+n^2+n+1)&&ispseudoprime(n),print(n)))
    
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**4) if isprime(n) and isprime(n**10+n**9+n**8+n**7+n**6+n**5+n**4+n**3+n**2+n+1)}