A240707 Sum of the middle parts in the partitions of 4n-1 into 3 parts.
1, 8, 31, 80, 159, 282, 459, 690, 993, 1378, 1841, 2404, 3077, 3852, 4755, 5796, 6963, 8286, 9775, 11414, 13237, 15254, 17445, 19848, 22473, 25296, 28359, 31672, 35207, 39010, 43091, 47418, 52041, 56970, 62169, 67692, 73549, 79700, 86203, 93068, 100251
Offset: 1
Examples
For a(n) add the parts in the second columns. 13 + 1 + 1 + 1 12 + 2 + 1 + 1 11 + 3 + 1 + 1 10 + 4 + 1 + 1 9 + 5 + 1 + 1 8 + 6 + 1 + 1 7 + 7 + 1 + 1 11 + 2 + 2 + 1 10 + 3 + 2 + 1 9 + 1 + 1 + 1 9 + 4 + 2 + 1 8 + 2 + 1 + 1 8 + 5 + 2 + 1 7 + 3 + 1 + 1 7 + 6 + 2 + 1 6 + 4 + 1 + 1 9 + 3 + 3 + 1 5 + 5 + 1 + 1 8 + 4 + 3 + 1 7 + 2 + 2 + 1 7 + 5 + 3 + 1 5 + 1 + 1 + 1 6 + 3 + 2 + 1 6 + 6 + 3 + 1 4 + 2 + 1 + 1 5 + 4 + 2 + 1 7 + 4 + 4 + 1 3 + 3 + 1 + 1 5 + 3 + 3 + 1 6 + 5 + 4 + 1 1 + 1 + 1 + 1 3 + 2 + 2 + 1 4 + 4 + 3 + 1 5 + 5 + 5 + 1 4(1) 4(2) 4(3) 4(4) .. 4n ------------------------------------------------------------------------ 1 8 31 80 .. a(n)
Links
- Index entries for sequences related to partitions
- Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1).
Programs
-
Maple
A240707:=n->add(add(i*floor((signum((floor((4*n-2-j)/2)-j))+2)/2), i=j+1..floor((4*n-2-j)/2)), j=0..2*n); seq(A240707(n), n=1..50);
-
Mathematica
c[n_] := Sum[Sum[i (Floor[(Sign[(Floor[(4 n - 2 - j)/2] - j)] + 2)/2]), {i, j + 1, Floor[(4 n - 2 - j)/2]}], {j, 0, 2 n}]; Table[c[n], {n, 50}]
-
PARI
Vec(x*(x^2+3*x+1)*(3*x^4+3*x^3+6*x^2+3*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Apr 13 2014
-
PARI
A240707(n)=sum(a=1,(4*n-1)\3,(4*n-1-a)\2*((4*n-1-a)\2+1)-a*(a-1))\2 \\ The summand is sum(b=a,(4*n-1-a)\2,b). - M. F. Hasler, Apr 17 2014
Formula
G.f.: x*(x^2+3*x+1)*(3*x^4+3*x^3+6*x^2+3*x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Apr 13 2014
Extensions
Definition simplified by M. F. Hasler, Apr 17 2014
Comments