cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240735 a(n) = floor(6^n/(3+sqrt(3))^n).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 13, 17, 21, 27, 35, 44, 56, 71, 90, 115, 146, 185, 235, 298, 378, 479, 607, 770, 977, 1238, 1570, 1991, 2525, 3202, 4060, 5148, 6527, 8276, 10494, 13306, 16872, 21393, 27125, 34393, 43609, 55294, 70111, 88897, 112717, 142919
Offset: 0

Views

Author

Kival Ngaokrajang, Apr 11 2014

Keywords

Comments

a(n) is the perimeter (rounded down) of a dodecaflake after n iterations, let a(0) = 1. The total number of sides is 12*A000400(n). The total number of holes is A240846. 3 + sqrt(3) = A165663.

Crossrefs

Cf. A000400, A240846, A165663, A240523 (pentaflake), A240671 (heptaflake), A240572 (octaflake), A240733 (nonaflake), A240734 (decaflake), A240735 (dodecaflake).

Programs

  • Maple
    A240735:=n->floor(6^n/(3+sqrt(3))^n); seq(A240735(n), n=0..50); # Wesley Ivan Hurt, Apr 12 2014
  • Mathematica
    Table[Floor[6^n/(3 + Sqrt[3])^n], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 12 2014 *)
  • PARI
    {a(n)=floor(6^n/(3+sqrt(3))^n)}
           for (n=0, 100, print1(a(n), ", "))