cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240736 Number of compositions of n having exactly one fixed point.

Original entry on oeis.org

1, 1, 1, 4, 7, 16, 29, 60, 120, 238, 479, 956, 1910, 3817, 7633, 15252, 30491, 60955, 121865, 243650, 487165, 974112, 1947851, 3895086, 7789153, 15576624, 31150481, 62296424, 124585395, 249158607, 498297297, 996562085, 1993071152, 3986055928, 7971971230
Offset: 1

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 11 2014

Keywords

Examples

			a(4) = 4: 13, 22, 112, 1111.
a(5) = 7: 14, 32, 131, 221, 1112, 1121, 11111.
		

References

  • M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences.

Crossrefs

Column k=1 of A238349 and of A238350.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, series(
          add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 2))
        end:
    a:= n-> coeff(b(n, 1), x, 1):
    seq(a(n), n=1..40);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n - j, i + 1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 2}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 06 2014, after Maple *)

Formula

a(n) ~ c * 2^n, where c = A065442 * A048651 / 2 = 0.2319972162254452238942023675457837005318389885... - Vaclav Kotesovec, Sep 06 2014