A240739 Number of compositions of n having exactly four fixed points.
1, 1, 3, 7, 16, 30, 70, 144, 299, 615, 1261, 2584, 5238, 10624, 21482, 43350, 87331, 175703, 353074, 708963, 1422445, 2852299, 5716668, 11453033, 22938117, 45928418, 91941762, 184021452, 368267172, 736898601, 1474388631, 2949737232, 5901032198, 11804591355
Offset: 10
Keywords
Examples
a(12) = 3: 12315, 12342, 123411. a(13) = 7: 12145, 12325, 12343, 123151, 123412, 123421, 1234111. a(14) = 16: 11345, 12245, 12335, 12344, 121451, 123116, 123152, 123251, 123413, 123422, 123431, 1231511, 1234112, 1234121, 1234211, 12341111.
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 10..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, series( add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 5)) end: a:= n-> coeff(b(n, 1), x, 4): seq(a(n), n=10..50);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n-j, i+1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 5}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 4}]; Table[a[n], {n, 10, 50}] (* Jean-François Alcover, Nov 07 2014, after Maple *)
Formula
a(n) ~ c * 2^n, where c = 0.00134325422292269761312514583911029332451787453007326095828843859220629510... . - Vaclav Kotesovec, Sep 07 2014