A240744 Number of compositions of n having exactly nine fixed points.
1, 1, 3, 7, 16, 35, 76, 162, 342, 715, 1474, 3049, 6245, 12746, 25922, 52571, 106353, 214731, 432827, 871240, 1751725, 3518787, 7062725, 14167004, 28402284, 56916681, 114017164, 228335406, 457163368, 915131854, 1831578490, 3665302380, 7334102844, 14673905376
Offset: 45
Keywords
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 45..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, series( add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n), x, 10)) end: a:= n-> coeff(b(n, 1), x, 9): seq(a(n), n=45..80);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, Series[Sum[b[n - j, i + 1]*If[i == j, x, 1], {j, 1, n}], {x, 0, 10}]]; a[n_] := SeriesCoefficient[b[n, 1], {x, 0, 9}]; Table[a[n], {n, 45, 80}] (* Jean-François Alcover, Nov 06 2014, after Maple *)
Formula
a(n) ~ c * 2^n, where c = 0.00000000000004863374631933235641619389991611011374568106537836728124272498... . - Vaclav Kotesovec, Sep 07 2014