A240837 Partitions as specified by composition into an even number of parts.
1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 2, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 2, 2, 1, 4, 3, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 2, 2, 2, 1, 4, 4, 3, 3, 1, 2, 2, 1, 1, 3, 3, 2, 5, 4, 1, 3, 1, 1, 4, 2, 2, 1, 1, 1, 3, 2, 2, 4, 3, 3, 2, 1
Offset: 2
Examples
For row 11, the 11th row in A240750 is 2,1,1,1. This gives us the Ferrers diagram: * * * * * with boundary 2 horizontal, 1 vertical, 1 horizontal, 1 vertical. This is the diagram for partition [2,2,1]. The table starts: [] (none) 1 1,1; 2 1,1,1; 2,2; 3; 2,1 1,1,1,1; 2,2,2; 3,3; 2,2,1; 4; 3,1; 2,1,1; 3,2
Programs
-
PARI
evil(n) = local(r=0, m=n); while(m>0, if(m%2==1, r=1-r); m\=2); n*2+r A066099row(n) = {local(v=vector(n), j=0, k=0); while(n>0, k++; if(n%2==1, v[j++]=k; k=0); n\=2); vector(j, i, v[j-i+1])} A240750row(n) = A066099row(evil(n)) partpath(v) = {local(j=0,n=0,m=0,r); forstep(k=1,#v,2,n+=v[k];m+=v[k+1]); r=vector(n); forstep(k=1,#v,2,for(i=1,v[k],r[j++]=m);m-=v[k+1]); r} arow(n) = partpath(A240750row(n))
Comments