A240797 Total number of occurrences of the pattern 1=2 in all preferential arrangements (or ordered partitions) of n elements.
0, 1, 9, 78, 750, 8115, 98343, 1324204, 19650060, 318926745, 5623615965, 107093749818, 2191142272410, 47944109702671, 1117341011896515, 27633982917342360, 722929036749464280, 19946727355457792853, 578926427416920550233, 17632301590672398115270
Offset: 1
Keywords
Examples
The 13 preferential arrangements on 3 points and the number of times the pattern 1=2 occurs are: 1<2<3, 0 1<3<2, 0 2<1<3, 0 2<3<1, 0 3<1<2, 0 3<2<1, 0 1=2<3, 1 1=3<2, 1 2=3<1, 1 1<2=3, 1 2<1=3, 1 3<1=2, 1 1=2=3, 3, for a total of a(3) = 9.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..420
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, [1, 0], add((p-> p+ [0, p[1]*j*(j-1)/2])(b(n-j))*binomial(n, j), j=1..n)) end: a:= n-> b(n)[2]: seq(a(n), n=1..25); # Alois P. Heinz, Dec 08 2014
-
Mathematica
b[n_] := b[n] = If[n == 0, {1, 0}, Sum[Function[p, p + {0, p[[1]]*j*(j - 1)/2}][b[n - j]]*Binomial[n, j], {j, 1, n}]]; a[n_] := b[n][[2]]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 07 2017, after Alois P. Heinz *)
Formula
a(n) ~ n! * n / (4 * (log(2))^n). - Vaclav Kotesovec, May 03 2015
Extensions
a(8)-a(20) from Alois P. Heinz, Dec 08 2014
Comments