cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A241218 Smallest number m such that A240808(m) = n.

Original entry on oeis.org

2, 1, 0, 5, 10, 9, 14, 19, 15, 20, 28, 24, 23, 34, 27, 41, 37, 33, 44, 40, 36, 47, 61, 45, 53, 67, 48, 56, 70, 54, 62, 73, 57, 68, 94, 78, 71, 97, 81, 74, 100, 87, 77, 106, 90, 80, 109, 93, 86, 115, 96, 89, 121, 99, 146, 124, 105, 152, 127, 108, 155, 130
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 17 2014

Keywords

Comments

A240808(a(n)) = n and A240808(m) <> n for m < a(n).

Crossrefs

Cf. A120511.

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a241218 = fromJust . (`elemIndex` a240808_list)

A244480 Zeroth trisection of A240808.

Original entry on oeis.org

2, 2, 2, 5, 5, 8, 8, 8, 11, 14, 14, 17, 20, 20, 20, 23, 26, 26, 29, 32, 32, 32, 32, 32, 32, 32, 35, 38, 38, 41, 44, 47, 50, 53, 53, 56, 59, 59, 62, 62, 65, 68, 71, 74, 77, 77, 80, 83, 83, 83, 83, 83, 83, 83, 86, 89, 89, 92, 95, 98, 101, 104, 104, 107, 110, 110, 113, 113, 116, 119, 122, 125, 128, 128
Offset: 0

Views

Author

N. J. A. Sloane, Jul 03 2014

Keywords

References

  • Higham, Jeff and Tanny, Stephen, A tamely chaotic meta-Fibonacci sequence. Twenty-third Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1993). Congr. Numer. 99 (1994), 67-94.

Crossrefs

A244481 First trisection of A240808.

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 7, 7, 7, 10, 10, 13, 16, 19, 19, 19, 19, 19, 19, 19, 22, 22, 25, 28, 31, 31, 31, 31, 31, 31, 31, 34, 37, 40, 40, 43, 46, 46, 49, 49, 52, 55, 58, 61, 64, 64, 67, 70, 73, 73, 76, 79, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 85, 88, 91
Offset: 0

Views

Author

N. J. A. Sloane, Jul 03 2014

Keywords

References

  • Higham, Jeff and Tanny, Stephen, A tamely chaotic meta-Fibonacci sequence. Twenty-third Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1993). Congr. Numer. 99 (1994), 67-94.

Crossrefs

A244482 Second trisection of A240808.

Original entry on oeis.org

0, 3, 3, 3, 6, 6, 9, 12, 12, 12, 12, 12, 12, 15, 18, 21, 21, 24, 27, 27, 30, 30, 33, 36, 39, 42, 45, 45, 48, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 54, 54, 57, 60, 63, 66, 69, 69, 72, 75, 78, 81, 84, 84, 87, 90, 90, 93, 93, 96, 99, 102, 105, 108, 108, 111, 114, 114
Offset: 0

Views

Author

N. J. A. Sloane, Jul 03 2014

Keywords

References

  • Higham, Jeff and Tanny, Stephen, A tamely chaotic meta-Fibonacci sequence. Twenty-third Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1993). Congr. Numer. 99 (1994), 67-94.

Crossrefs

A006949 A well-behaved cousin of the Hofstadter sequence: a(n) = a(n - 1 - a(n-1)) + a(n - 2 - a(n-2)) for n > 2 with a(0) = a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 7, 8, 8, 8, 8, 8, 9, 10, 10, 11, 12, 12, 12, 13, 14, 14, 15, 16, 16, 16, 16, 16, 16, 17, 18, 18, 19, 20, 20, 20, 21, 22, 22, 23, 24, 24, 24, 24, 25, 26, 26, 27, 28, 28, 28, 29, 30, 30, 31, 32, 32, 32, 32, 32, 32, 32, 33, 34, 34, 35, 36, 36
Offset: 0

Views

Author

Keywords

Comments

Number of different partial sums of 1+[1,2]+[1,4]+[1,8]+[1,16]+... E.g., a(6)=3 because we have 6 = 1+1+1+1+1+1 = 1+1+4 = 1+2+1+1+1. - Jon Perry, Jan 01 2004
Ignoring first term, this is the Meta-Fibonacci sequence for s=1. - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)
Comment from N. J. A. Sloane, Jul 03 2014: (Start)
The recurrence a(n) = a(n-1-a(n-1)) + a(n-2-a(n-2)) for n>2 with a(0)=X, a(1)=Y, a(2)=Z gives rise to the following sequences (cf. Higham-Tanny 1993):
X Y Z
3 1 0 A244483
2 1 0 A240808
2 1 1 A240807
2 0 2 A244478
1 0 2 A240808 again
1 1 1 A006949 (this sequence).
Most other initial values do not produce a nontrivial sequence. (End)
Higham and Tanny (1993) define a family {t_k(n)} (k=0,12,...) of sequences by t_k(n) = floor(n/2) for 0 <= n < k; thereafter t_k(n) = t_k(n-1-t_k(n-1)) + t_k(n-2-t_k(n-2)). The sequence t_4(n) begins 0, 0, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 7, 8, 8, 8, 8, 8, 9, ..., which is essentially this sequence. - N. J. A. Sloane, Jul 03 2014
The values X=0 Y=1 Z=1 and X=1 Y=1 Z=2 (see above comments) also produce a sequence which is essentially this sequence. - Pablo Hueso Merino, Dec 31 2020

References

  • Jeff Higham and Stephen Tanny, More well-behaved meta-Fibonacci sequences. Proceedings of the Twenty-fourth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1993). Congr. Numer. 98(1993), 3-17.
  • Jeff Higham and Stephen Tanny, A tamely chaotic meta-Fibonacci sequence. Twenty-third Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1993). Congr. Numer. 99 (1994), 67-94.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See also A120511. A244478, A244479, A240807, A240808, A244483 have the same recurrence but different initial conditions.
Cf. A241235 (run lengths).

Programs

  • Haskell
    a006949 n = a006949_list !! n
    a006949_list = 1 : 1 : 1 : zipWith (+) xs (tail xs)
       where xs = map a006949 $ zipWith (-) [1..] $ tail a006949_list
    -- Reinhard Zumkeller, Apr 17 2014
  • Maple
    A006949 := proc(n) option remember: if n<3 then 1 else A006949(n-1-A006949(n-1))+A006949(n-2-A006949(n-2)) fi end;
  • Mathematica
    a[0] = a[1] = a[2] = 1; a[n_] := a[n] = a[n - 1 - a[n - 1]] + a[n - 2 - a[n - 2]]; Table[a@ n, {n, 0, 75}] (* Michael De Vlieger, Mar 24 2017 *)
  • PARI
    { n=20; v=vector(n); for (i=1,n,v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2,n, k=length(v[i-1]); for (j=1,k, v[i][j]=v[i-1][j]+1; v[i][j+k]=v[i-1][j]+2^(i-1))); c=vector(n); for (i=1,n, for (j=1,2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry, Jan 01 2004
    

Formula

a(n) = a(n-1) + 0 or 1 for n > 0 and lim_{n -> infinity} a(n)/n = 1/2. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jun 27 2003
G.f.: z + z * Sum_{n >= 1} Product_{k=1..n} (z + z^(2^k)). - Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca)
For an efficient way to compute this sequence for large n, see A120511.

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jun 27 2003

A240807 a(0)=a(1)=-1, a(2)=2; thereafter a(n) = a(n-1-a(n-1))+a(n-2-a(n-2)) unless a(n-1) <= n-1 or a(n-2) <= n-2 in which case the sequence terminates.

Original entry on oeis.org

-1, -1, 2, 1, 1, 3, 3, 3, 2, 4, 6, 4, 4, 5, 4, 8, 9, 6, 7, 8, 8, 8, 9, 10, 10, 9, 13, 14, 10, 12, 13, 12, 14, 15, 14, 15, 16, 16, 16, 17, 18, 18, 19, 20, 20, 20, 19, 23, 24, 20, 22, 22, 22, 25, 23, 22, 27, 27, 25, 28, 27, 27, 29, 29, 29, 29, 31, 31, 31, 32, 32, 32, 33, 34, 34, 35, 36, 36, 36, 37, 38, 38, 39, 40, 40, 40, 40, 39, 43, 44, 40, 42, 42, 42
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2014

Keywords

References

  • Higham, Jeff and Tanny, Stephen, A tamely chaotic meta-Fibonacci sequence. Twenty-third Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1993). Congr. Numer. 99 (1994), 67-94.

Crossrefs

A006949 and A240808 have the same recurrence but different initial conditions.

Programs

  • Haskell
    a240807 n = a240807_list !! n
    a240807_list = -1 : -1 : 2 : zipWith (+) xs (tail xs)
       where xs = map a240807 $ zipWith (-) [1..] $ tail a240807_list
    -- Reinhard Zumkeller, Apr 17 2014
  • Maple
    a:=proc(n) option remember;
    if n = 0 then  -1
    elif n = 1 then -1
    elif n = 2 then 2
    else
        if (a(n-1) <= n-1) and (a(n-2) <= n-2) then
        a(n-1-a(n-1))+a(n-2-a(n-2));
        else lprint("died with n =",n); return (-1);
        fi;
    fi; end;
    [seq(a(n),n=0..100)];
  • Mathematica
    a[n_] := a[n] = Switch[n, 0, -1, 1, -1, 2, 2, _,
       If[a[n-1] <= n-1 && a[n-2] <= n-2,
       a[n-1-a[n-1]] + a[n-2-a[n-2]],
       Print["died with n =", n]; Return[-1]]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 02 2024 *)

A244478 a(0)=2, a(1)=0, a(2)=2; thereafter a(n) = a(n-1-a(n-1))+a(n-2-a(n-2)) unless a(n-1) <= n-1 or a(n-2) <= n-2 in which case the sequence terminates.

Original entry on oeis.org

2, 0, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 8, 8, 8, 8, 8, 8, 10, 10, 10, 12, 12, 12, 12, 14, 14, 14, 16, 16, 16, 16, 16, 16, 16, 18, 18, 18, 20, 20, 20, 20, 22, 22, 22, 24, 24, 24, 24, 24, 26, 26, 26, 28, 28, 28, 28, 30, 30, 30, 32, 32, 32, 32, 32, 32, 32, 32, 34, 34, 34, 36, 36, 36, 36, 38, 38, 38
Offset: 0

Views

Author

N. J. A. Sloane, Jul 02 2014

Keywords

References

  • Higham, J.; Tanny, S. More well-behaved meta-Fibonacci sequences. Proceedings of the Twenty-fourth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1993). Congr. Numer. 98(1993), 3-17. See Prop. 2.1.

Crossrefs

A006949, A240807, A240808 use the same recurrence.
See also A244479 (a(n)/2).

Programs

  • Haskell
    a244478 n = a244478_list !! n
    a244478_list = 2 : 0 : 2 : zipWith (+) xs (tail xs)
       where xs = map a244478 $ zipWith (-) [1..] $ tail a244478_list
    -- Reinhard Zumkeller, Jul 05 2014
  • Maple
    f := proc(n) option remember;
        if n=0 then 2
        elif n=1 then 0
        elif n=2 then 2
        else
        f(n-1-f(n-1))+f(n-2-f(n-2));
        fi;
    end proc;
    [seq(f(n),n=0..2000)];
  • Mathematica
    f[n_] := f[n] = Switch[n, 0, 2, 1, 0, 2, 2, _,
       f[n-1-f[n-1]]+f[n-2-f[n-2]]];
    Table[f[n], {n, 0, 100}] (* Jean-François Alcover, Oct 02 2024 *)
Showing 1-7 of 7 results.