cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240844 Number of partitions of n into tribonacci numbers (cf. A000073).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 14, 16, 20, 23, 28, 32, 38, 43, 50, 56, 65, 73, 83, 92, 105, 116, 131, 144, 163, 178, 199, 217, 242, 263, 291, 316, 348, 377, 413, 447, 488, 527, 573, 617, 670, 720, 779, 835, 903, 966, 1041, 1112, 1198, 1277, 1371, 1460, 1566
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 13 2014

Keywords

Examples

			a(6) = #{4+2, 4+1+1, 2+2+2, 2+2+1+1, 2+1+1+1+1, 6x1} = 6;
a(7) = #{7, 4+2+1, 4+1+1+1, 2+2+2+1, 2+2+1+1+1, 2+1+1+1+1+1, 7x1} = 7;
a(8) = #{7+1, 4+4, 4+2+2, 4+2+1+1, 4+1+1+1+1, 2+2+2+2, 2+2+2+1+1, 2+2+1+1+1+1, 2+6x1, 8x1} = 10;
a(9) = #{7+2, 7+1+1, 4+4+1, 4+2+2+1, 4+2+1+1+1, 4+5x1, 2+2+2+2+1, 2+2+2+1+1+1, 2+2+5x1, 2+7x1, 9x1} = 11;
a(10) = #{7+2+1, 7+1+1+1, 4+4+2, 4+4+1+1, 4+2+2+2, 4+2+2+1+1, 4+2+1+1+1+1, 4+6x1, 5x2, 2+2+2+2+1+1, 2+2+2+1+1+1+1, 2+2+6x1, 2+8x1, 10x1} = 14.
		

Crossrefs

Cf. A117546.

Programs

  • Haskell
    a240844 = p $ drop 3 a000073_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m