cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240872 Number of partitions p of n into distinct parts such that max(p) = 4 + min(p).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4
Offset: 0

Views

Author

Clark Kimberling, Apr 15 2014

Keywords

Examples

			a(12) counts these 3 partitions:  84, 642, 5421.
		

Crossrefs

Programs

  • Mathematica
        z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
        Table[Count[f[n], p_ /; Max[p] == 2 + Min[p]], {n, 0, z}] (* A171182 *)
        Table[Count[f[n], p_ /; Max[p] == 3 + Min[p]], {n, 0, z}] (* A240871 *)
        Table[Count[f[n], p_ /; Max[p] == 4 + Min[p]], {n, 0, z}] (* A240872 *)
        Table[Count[f[n], p_ /; Max[p] == 5 + Min[p]], {n, 0, z}] (* A240873 *)

Formula

G.f.: -x^6*(x^12+2*x^11+3*x^10+5*x^9+5*x^8+6*x^7+7*x^6+6*x^5+5*x^4+4*x^3+3*x^2+x+1) / ((x-1)*(x+1)*(x^2+1)*(x^4+x^3+x^2+x+1)). - Alois P. Heinz, Jun 18 2025