A240872 Number of partitions p of n into distinct parts such that max(p) = 4 + min(p).
0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 4
Offset: 0
Examples
a(12) counts these 3 partitions: 84, 642, 5421.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (-1,-1,-1,0,1,1,1,1).
Programs
-
Mathematica
z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; Table[Count[f[n], p_ /; Max[p] == 2 + Min[p]], {n, 0, z}] (* A171182 *) Table[Count[f[n], p_ /; Max[p] == 3 + Min[p]], {n, 0, z}] (* A240871 *) Table[Count[f[n], p_ /; Max[p] == 4 + Min[p]], {n, 0, z}] (* A240872 *) Table[Count[f[n], p_ /; Max[p] == 5 + Min[p]], {n, 0, z}] (* A240873 *)
Formula
G.f.: -x^6*(x^12+2*x^11+3*x^10+5*x^9+5*x^8+6*x^7+7*x^6+6*x^5+5*x^4+4*x^3+3*x^2+x+1) / ((x-1)*(x+1)*(x^2+1)*(x^4+x^3+x^2+x+1)). - Alois P. Heinz, Jun 18 2025