A240917 a(n) = 2*3^(2*n) - 3*3^n + 1.
0, 10, 136, 1378, 12880, 117370, 1060696, 9559378, 86073760, 774781930, 6973391656, 62761587778, 564857478640, 5083726873690, 45753570561016, 411782221142578, 3706040248563520, 33354363011912650, 300189269431736776, 2701703431859199778
Offset: 0
Links
- Kival Ngaokrajang, Illustration of triflake like fractal (fan pattern) for n = 0..3
- Wikipedia, n-flake,
- Index entries for linear recurrences with constant coefficients, signature (13,-39, 27).
Crossrefs
Programs
-
Maple
A240917:=n->2*3^(2*n) - 3*3^n + 1; seq(A240917(n), n=0..30); # Wesley Ivan Hurt, Apr 15 2014
-
Mathematica
Table[2*3^(2 n) - 3*3^n + 1, {n, 0, 30}] (* Wesley Ivan Hurt, Apr 15 2014 *)
-
PARI
a(n)= 2*3^(2*n) - 3*3^n + 1 for(n=0,100,print1(a(n),", "))
-
PARI
concat(0, Vec(-2*x*(3*x+5)/((x-1)*(3*x-1)*(9*x-1)) + O(x^100))) \\ Colin Barker, Apr 15 2014
Formula
a(n) = 9*(a(n-1) + 2*A048473(n-1)) + 1.
From Colin Barker, Apr 15 2014: (Start)
a(n) = 1-3^(1+n)+2*9^n.
a(n) = 13*a(n-1)-39*a(n-2)+27*a(n-3).
G.f.: -2*x*(3*x+5) / ((x-1)*(3*x-1)*(9*x-1)). (End).
Comments