A240920 Prime numbers that occur as divisors of numbers of the form m^2 + 5.
2, 3, 5, 7, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 103, 107, 109, 127, 149, 163, 167, 181, 223, 227, 229, 241, 263, 269, 281, 283, 307, 347, 349, 367, 383, 389, 401, 409, 421, 443, 449, 461, 463, 467, 487, 503, 509, 521, 523, 541, 547, 563
Offset: 1
Examples
23 is in the sequence because it divides 8^2+5=69 with m=8.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
- David Lowry-Duda, Unexpected Conjectures about -5 Modulo Primes, College Mathematics Journal, Vol. 46, No. 1 (Jan 2015), pp.56-57.
Programs
-
Maple
isA240920 := proc(p) local n; if isprime(p) then for n from 0 to p do if modp(n^2+5,p) = 0 then return true; end if; end do: false; else false; end if; end proc: for i from 1 to 600 do p := ithprime(i) ; if isA240920(p) then printf("%d,",p); end if; end do:
-
PARI
select(p->issquare(Mod(-5,p)), primes(100)) \\ Charles R Greathouse IV, Nov 29 2016
Formula
a(n) ~ 2n log n. - Charles R Greathouse IV, Nov 29 2016
Comments