cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240924 Digital root of squares of numbers not divisible by 2, 3 or 5.

Original entry on oeis.org

1, 4, 4, 7, 1, 1, 7, 4, 7, 1, 7, 4, 4, 7, 1, 7, 4, 7, 1, 1, 7, 4, 4, 1, 1, 4, 4, 7, 1, 1, 7, 4, 7, 1, 7, 4, 4, 7, 1, 7, 4, 7, 1, 1, 7, 4, 4, 1, 1, 4, 4, 7, 1, 1, 7, 4, 7, 1, 7, 4, 4, 7, 1, 7, 4, 7, 1, 1, 7, 4, 4, 1
Offset: 1

Views

Author

Gary Croft, Aug 15 2014

Keywords

Comments

This period 24 repeating sequence is palindromic.

Examples

			The first 8 numbers not divisible by 2, 3 or 5 are 1,7,11,13,17,19,23,29; with squares 1,49,121,169,289,361,529,841 and digital root sequence of 1,4,4,7,1,1,7,4.
		

Crossrefs

Programs

  • PARI
    Vec(x*(1 + x)^2*(1 - 4*x^2 + 12*x^3 - 27*x^4 + 45*x^5 - 53*x^6 + 45*x^7 - 27*x^8 + 12*x^9 - 4*x^10 + x^12) / ((1 - x)*(1 - x + x^2)*(1 - x^2 + x^4)*(1 - x^4 + x^8)) + O(x^100)) \\ Colin Barker, Sep 21 2019
  • Python
    A240924 = [1 + (n*n-1) % 9 for n in range(1,10**3,2) if n % 3 and n % 5 ]
    # Chai Wah Wu, Sep 03 2014
    

Formula

From Colin Barker, Sep 21 2019: (Start)
G.f.: x*(1 + x)^2*(1 - 4*x^2 + 12*x^3 - 27*x^4 + 45*x^5 - 53*x^6 + 45*x^7 - 27*x^8 + 12*x^9 - 4*x^10 + x^12) / ((1 - x)*(1 - x + x^2)*(1 - x^2 + x^4)*(1 - x^4 + x^8)).
a(n) = 2*a(n-1) - a(n-2) - a(n-3) + 2*a(n-4) - a(n-5) - a(n-6) + 2*a(n-7) - 2*a(n-8) + a(n-9) + a(n-10) - 2*a(n-11) + a(n-12) + a(n-13) - 2*a(n-14) + a(n-15) for n>15.
(End)