cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Gary Croft

Gary Croft's wiki page.

Gary Croft has authored 18 sequences. Here are the ten most recent ones:

A301628 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 7.

Original entry on oeis.org

7, 43, 61, 79, 97, 133, 151, 169, 187, 223, 241, 259, 277, 313, 331, 349, 367, 403, 421, 439, 457, 493, 511, 529, 547, 583, 601, 619, 637, 673, 691, 709, 727, 763, 781, 799, 817, 853, 871, 889, 907, 943, 961, 979, 997, 1033, 1051, 1069, 1087, 1123
Offset: 1

Author

Gary Croft, Mar 24 2018

Keywords

Comments

Numbers == {7, 43, 61, 79} mod 90 with additive sum sequence 7{+36+18+18+18} {repeat ...}. Includes all prime numbers > 5 with digital root 7.

Examples

			7+36=43; 43+18=61; 61+18=79; 79+18=97; 97+36=133.
		

Crossrefs

Intersection of A007775 and A017245.

Programs

  • GAP
    Filtered(Filtered([1..1200],n->n mod 2 <> 0 and n mod 3 <> 0 and n mod 5 <> 0),i->i-9*Int((i-1)/9)=7); # Muniru A Asiru, Apr 22 2018
    
  • PARI
    Vec(x*(7 + 36*x + 18*x^2 + 18*x^3 + 11*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^40)) \\ Colin Barker, Sep 21 2019

Formula

Numbers == {7, 43, 61, 79} mod 90.
From Colin Barker, Sep 21 2019: (Start)
G.f.: x*(7 + 36*x + 18*x^2 + 18*x^3 + 11*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)

A301623 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 5.

Original entry on oeis.org

23, 41, 59, 77, 113, 131, 149, 167, 203, 221, 239, 257, 293, 311, 329, 347, 383, 401, 419, 437, 473, 491, 509, 527, 563, 581, 599, 617, 653, 671, 689, 707, 743, 761, 779, 797, 833, 851, 869, 887, 923, 941, 959, 977, 1013, 1031, 1049, 1067, 1103, 1121
Offset: 1

Author

Gary Croft, Mar 24 2018

Keywords

Comments

Numbers == {23, 41, 59, 77} mod 90 with additive sum sequence 23{+18+18+18+36} {repeat ...}. Includes all primes number > 5 with digital root 5.

Examples

			23+18=41; 41+18=59; 59+18=77; 77+36=113; 113+18=131.
		

Crossrefs

Intersection of A007775 and A017221.

Programs

  • GAP
    Filtered(Filtered([1..1200],n->n mod 2 <> 0 and n mod 3 <> 0 and n mod 5 <> 0),i->i-9*Int((i-1)/9)=5); # Muniru A Asiru, Apr 22 2018
  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{23,41,59,77,113},50] (* Harvey P. Dale, Jul 28 2018 *)
  • PARI
    Vec(x*(23 + 18*x + 18*x^2 + 18*x^3 + 13*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 25 2018
    

Formula

Numbers == {23, 41, 59, 77} mod 90.
From Colin Barker, Mar 25 2018: (Start)
G.f.: x*(23 + 18*x + 18*x^2 + 18*x^3 + 13*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)

A301622 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 4.

Original entry on oeis.org

13, 31, 49, 67, 103, 121, 139, 157, 193, 211, 229, 247, 283, 301, 319, 337, 373, 391, 409, 427, 463, 481, 499, 517, 553, 571, 589, 607, 643, 661, 679, 697, 733, 751, 769, 787, 823, 841, 859, 877, 913, 931, 949, 967, 1003, 1021, 1039, 1057, 1093, 1111
Offset: 1

Author

Gary Croft, Mar 24 2018

Keywords

Comments

Numbers == {13, 31, 49, 67} mod 90 with additive sum sequence 13{+18+18+18+36} {repeat ...}. Includes all prime numbers > 5 with digital root 4.

Crossrefs

Intersection of A007775 and A017209.

Programs

  • GAP
    Filtered(Filtered([1..1200],n->n mod 2 <> 0 and n mod 3 <> 0 and n mod 5 <> 0),i->i-9*Int((i-1)/9)=4); # Muniru A Asiru, Apr 22 2018
  • Mathematica
    Rest@ CoefficientList[Series[x (13 + 18 x + 18 x^2 + 18 x^3 + 23 x^4)/((1 - x)^2*(1 + x) (1 + x^2)), {x, 0, 50}], x] (* Michael De Vlieger, Apr 21 2018 *)
    LinearRecurrence[{1,0,0,1,-1},{13,31,49,67,103},50] (* Harvey P. Dale, May 11 2019 *)
  • PARI
    Vec(x*(13 + 18*x + 18*x^2 + 18*x^3 + 23*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 25 2018
    

Formula

Numbers == {13, 31, 49, 67} mod 90.
From Colin Barker, Mar 25 2018: (Start)
G.f.: x*(13 + 18*x + 18*x^2 + 18*x^3 + 23*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)

Extensions

Last term corrected by Colin Barker, Mar 25 2018

A301621 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 2.

Original entry on oeis.org

11, 29, 47, 83, 101, 119, 137, 173, 191, 209, 227, 263, 281, 299, 317, 353, 371, 389, 407, 443, 461, 479, 497, 533, 551, 569, 587, 623, 641, 659, 677, 713, 731, 749, 767, 803, 821, 839, 857, 893, 911, 929, 947, 983, 1001, 1019, 1037, 1073, 1091, 1109
Offset: 1

Author

Gary Croft, Mar 24 2018

Keywords

Comments

Numbers congruent to 11, 29, 47, or 83 mod 90 with additive sum sequence 11 { + 18 + 18 + 36 + 18} {repeat ...}. Includes all prime numbers greater than 5 with digital root 2.

Examples

			11+18=29; 29+18=47; 47+36=83; 83+18=101; 101+18=119.
		

Crossrefs

Intersection of A007775 and A017185.

Programs

  • GAP
    Filtered(Filtered([1..1200],n->n mod 2 <> 0 and n mod 3 <> 0 and n mod 5 <> 0),i->i-9*Int((i-1)/9)=2); # Muniru A Asiru, Apr 22 2018
  • Mathematica
    Flatten[Table[90n - {79, 61, 43, 7}, {n, 30}]] (* Alonso del Arte, Mar 29 2018 *)
  • PARI
    Vec(x*(11 + 18*x + 18*x^2 + 36*x^3 + 7*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 26 2018
    

Formula

n == {11, 29, 47, 83} mod 90.
From Colin Barker, Mar 26 2018: (Start)
G.f.: x*(11 + 18*x + 18*x^2 + 36*x^3 + 7*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)

A295869 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 8.

Original entry on oeis.org

17, 53, 71, 89, 107, 143, 161, 179, 197, 233, 251, 269, 287, 323, 341, 359, 377, 413, 431, 449, 467, 503, 521, 539, 557, 593, 611, 629, 647, 683, 701, 719, 737, 773, 791, 809, 827, 863, 881, 899, 917, 953, 971, 989, 1007, 1043, 1061, 1079, 1097, 1133
Offset: 1

Author

Gary Croft, Mar 24 2018

Keywords

Comments

Numbers == {17, 53, 71, 89} mod 90 with additive sum sequence 17{+36+18+18+18} {repeat ...}. Includes all prime numbers >5 with digital root 8.

Examples

			17+36=53; 53+18=71; 71+18=89; 89+18=107; 107+36=143.
		

Crossrefs

Intersection of A007775 and A017257.

Programs

  • GAP
    Filtered([1..1200],n->n mod 2<>0 and n mod 3 <>0 and n mod 5<>0 and n-9*Int((n-1)/9)=8); # Muniru A Asiru, May 30 2018
  • Maple
    select(n->modp(n,2)<>0 and modp(n,3)<>0 and modp(n,5)<>0 and n-9*floor((n-1)/9)=8,[$1..1200]); # Muniru A Asiru, May 30 2018
  • PARI
    Vec(x*(17 + 36*x + 18*x^2 + 18*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 26 2018
    

Formula

Numbers == {17, 53, 71, 89} mod 90.
From Colin Barker, Mar 26 2018: (Start)
G.f.: x*(17 + 36*x + 18*x^2 + 18*x^3 + x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = (5 + 9*(-1)^n - (9+9*i)*(-i)^n - (9-9*i)*i^n + 90*n) / 4, where i=sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)

A301617 Numbers not divisible by 2, 3 or 5 (A007775) with digital root 1.

Original entry on oeis.org

1, 19, 37, 73, 91, 109, 127, 163, 181, 199, 217, 253, 271, 289, 307, 343, 361, 379, 397, 433, 451, 469, 487, 523, 541, 559, 577, 613, 631, 649, 667, 703, 721, 739, 757, 793, 811, 829, 847, 883, 901, 919, 937, 973, 991, 1009, 1027, 1063, 1081, 1099
Offset: 1

Author

Gary Croft, Mar 24 2018

Keywords

Comments

Numbers == {1, 19, 37, 73} mod 90 with additive sum sequence 1{+18+18+36+18} {repeat ...}. Includes all prime numbers > 7 with digital root 1.

Examples

			1+18=19; 19+18=37; 37+36=73; 73+18=91; 91+18=109.
		

Crossrefs

Intersection of A007775 and A017173.

Programs

  • Maple
    seq(seq(i+90*j,i=[1,19,37,73]),j=0..30); # Robert Israel, Mar 25 2018
  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{1,19,37,73,91},50] (* Harvey P. Dale, Dec 14 2019 *)
  • PARI
    a(n) = 1 + 18 * (n - 1 + n\4) \\ David A. Corneth, Mar 24 2018
    
  • PARI
    Vec(x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Mar 24 2018

Formula

n == {1, 19, 37, 73} mod 90.
a(n + 1) = a(n) + 18 * A177704(n + 1). - David A. Corneth, Mar 24 2018
From Colin Barker, Mar 24 2018: (Start)
G.f.: x*(1 + 18*x + 18*x^2 + 36*x^3 + 17*x^4) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
(End)

Extensions

The missing term 1081 added to the sequence by Colin Barker, Mar 24 2018

A261371 Prime numbers that sum to a prime when added to their digital root.

Original entry on oeis.org

11, 13, 29, 53, 67, 71, 89, 101, 103, 137, 191, 193, 227, 229, 233, 269, 281, 359, 431, 449, 461, 463, 499, 569, 593, 641, 643, 659, 683, 701, 719, 769, 821, 823, 857, 859, 877, 967, 1019, 1061, 1091, 1093, 1223, 1289, 1439, 1451, 1487, 1489, 1579, 1597, 1601, 1619
Offset: 1

Author

Gary Croft, Sep 11 2015

Keywords

Examples

			11 (prime) + 2 (its digital root) = 13 (prime);
89 (prime) + 8 (its digital root) = 97 (prime).
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | IsPrime(p+(p mod 9))]; // Vincenzo Librandi, Sep 29 2015
  • Mathematica
    Select[Prime[Range[300]], PrimeQ[# + Mod[#, 9]] &] (* Vincenzo Librandi, Sep 29 2015 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(p + p%9), print1(p, ", "))); \\ Michel Marcus, Sep 12 2015
    

Formula

(a(n) mod 9) mod 2 = 0. - Altug Alkan, Sep 28 2015

A246508 Digital root of numbers congruent to {1,7,11,13,17,19,23,29} modulo 30.

Original entry on oeis.org

1, 7, 2, 4, 8, 1, 5, 2, 4, 1, 5, 7, 2, 4, 8, 5, 7, 4, 8, 1, 5, 7, 2, 8, 1, 7, 2, 4, 8, 1, 5, 2, 4, 1, 5, 7, 2, 4, 8, 5, 7, 4, 8, 1, 5, 7, 2, 8, 1, 7, 2, 4, 8, 1, 5, 2, 4, 1, 5, 7, 2, 4, 8, 5, 7, 4, 8, 1, 5, 7, 2, 8, 1, 7, 2, 4, 8, 1, 5, 2, 4, 1, 5, 7, 2, 4, 8, 5, 7, 4
Offset: 1

Author

Gary Croft, Nov 14 2014

Keywords

Comments

Period 24 repeating sequence, the digital root squares of which produce period 24 palindromic sequence A240924.

Crossrefs

Cf. A007775 (numbers not divisible by 2, 3 or 5), A240924 (digital root of this sequence squared).

Formula

a(n) = A010888(A007775(n)). - Michel Marcus, Nov 25 2014
G.f.: ( -x*(1 +7*x +2*x^2 +4*x^3 +8*x^4 +x^5 +5*x^6 +2*x^7 +4*x^8 +x^9 +5*x^10 +7*x^11 +2*x^12 +4*x^13 +8*x^14 +5*x^15 +7*x^16 +4*x^17 +8*x^18 +x^19 +5*x^20 +7*x^21 +2*x^22 +8*x^23) ) / ( (x-1) *(1+x+x^2) *(1+x) *(1-x+x^2) *(1+x^2) *(x^4-x^2+1) *(1+x^4) *(x^8-x^4+1) ). - R. J. Mathar, Sep 22 2016

A240924 Digital root of squares of numbers not divisible by 2, 3 or 5.

Original entry on oeis.org

1, 4, 4, 7, 1, 1, 7, 4, 7, 1, 7, 4, 4, 7, 1, 7, 4, 7, 1, 1, 7, 4, 4, 1, 1, 4, 4, 7, 1, 1, 7, 4, 7, 1, 7, 4, 4, 7, 1, 7, 4, 7, 1, 1, 7, 4, 4, 1, 1, 4, 4, 7, 1, 1, 7, 4, 7, 1, 7, 4, 4, 7, 1, 7, 4, 7, 1, 1, 7, 4, 4, 1
Offset: 1

Author

Gary Croft, Aug 15 2014

Keywords

Comments

This period 24 repeating sequence is palindromic.

Examples

			The first 8 numbers not divisible by 2, 3 or 5 are 1,7,11,13,17,19,23,29; with squares 1,49,121,169,289,361,529,841 and digital root sequence of 1,4,4,7,1,1,7,4.
		

Crossrefs

Programs

  • PARI
    Vec(x*(1 + x)^2*(1 - 4*x^2 + 12*x^3 - 27*x^4 + 45*x^5 - 53*x^6 + 45*x^7 - 27*x^8 + 12*x^9 - 4*x^10 + x^12) / ((1 - x)*(1 - x + x^2)*(1 - x^2 + x^4)*(1 - x^4 + x^8)) + O(x^100)) \\ Colin Barker, Sep 21 2019
  • Python
    A240924 = [1 + (n*n-1) % 9 for n in range(1,10**3,2) if n % 3 and n % 5 ]
    # Chai Wah Wu, Sep 03 2014
    

Formula

From Colin Barker, Sep 21 2019: (Start)
G.f.: x*(1 + x)^2*(1 - 4*x^2 + 12*x^3 - 27*x^4 + 45*x^5 - 53*x^6 + 45*x^7 - 27*x^8 + 12*x^9 - 4*x^10 + x^12) / ((1 - x)*(1 - x + x^2)*(1 - x^2 + x^4)*(1 - x^4 + x^8)).
a(n) = 2*a(n-1) - a(n-2) - a(n-3) + 2*a(n-4) - a(n-5) - a(n-6) + 2*a(n-7) - 2*a(n-8) + a(n-9) + a(n-10) - 2*a(n-11) + a(n-12) + a(n-13) - 2*a(n-14) + a(n-15) for n>15.
(End)

A230113 Digital root of summed Fibonacci and Lucas digital roots indexed by numbers not divisible by 2, 3 or 5.

Original entry on oeis.org

3, 4, 5, 6, 6, 5, 4, 3, 4, 6, 6, 5, 4, 3, 3, 5, 6, 5, 4, 3, 3, 4, 5, 6, 5, 3, 3, 4, 5, 6, 6, 4, 3, 4, 5, 6, 6, 5, 4, 3, 4, 6, 6, 5, 4, 3, 3, 5, 6, 5, 4, 3, 3, 4, 5, 6, 5, 3, 3, 4, 5, 6, 6, 4, 3, 4, 5, 6, 6, 5, 4, 3, 4, 6, 6, 5, 4, 3, 3, 5, 6, 5, 4, 3, 3, 4, 5, 6, 5, 3, 3, 4, 5, 6, 6, 4
Offset: 1

Author

Gary Croft, Dec 20 2013

Keywords

Comments

32-beat repeating sequence is periodically palindromic starting at Length(40), then at Lengths (72)...(104)...(136)...(168)...{+32 terms ... repeat ... n}.

Examples

			Referencing A227896 (Fibo) and A233766 (Lucas): 1st Fibo term (1) + 1st Lucas term (2) = 3 = digital root 3. Likewise, 2nd Fibo term (4) + 2nd Lucas term (9) = 13 = digital root 4.
		

Crossrefs

Formula

Conjectures from Colin Barker, Sep 22 2019: (Start)
G.f.: x*(3 + x + x^2 + x^3 - x^5 - x^6 - x^7 + x^8 + 2*x^9 - x^11 - x^12 - x^13 + 2*x^15 + 4*x^16) / ((1 - x)*(1 + x^16)).
a(n) = a(n-1) - a(n-16) + a(n-17) for n>17.
(End)