A240960 Numbers m such that sigma(m) - phi(m) = tau(m)^omega(m), where sigma=A000203, phi=A000010, tau=A000005 and omega=A001221.
2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a240960 n = a240960_list !! (n-1) a240960_list = filter (\x -> a051612 x == a110088 x) [1..]
-
Maple
with(numtheory): filter:= n -> sigma(n) - phi(n) = tau(n)^nops(factorset(n)): select(filter, [$1..1000]); # Robert Israel, Aug 05 2014
-
Mathematica
Select[Range[300], DivisorSigma[1, #] - EulerPhi[#] == DivisorSigma[0, #]^PrimeNu[#]&] (* Jean-François Alcover, Mar 08 2019 *)
-
PARI
is(n)=my(f=factor(n)); sigma(f)-eulerphi(f)==numdiv(f)^omega(f) \\ Charles R Greathouse IV, Nov 26 2014
-
Python
from sympy import totient,divisors,divisor_count,primefactors filter(lambda x:sum(divisors(x))-totient(x)==divisor_count(x)**len(primefactors(x)), range(1,10**5)) # Chai Wah Wu, Aug 05 2014
Comments