cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240960 Numbers m such that sigma(m) - phi(m) = tau(m)^omega(m), where sigma=A000203, phi=A000010, tau=A000005 and omega=A001221.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 05 2014

Keywords

Comments

a(n) = A182140(n) for n <= 35.
All primes p are in the sequence since (p+1) - (p-1) = 2^1. The first composites are 15, 119748396, 139254850, 187768485, 1420027536, 3991789984. A182140 seems unrelated. - Jens Kruse Andersen, Aug 05 2014

Crossrefs

Programs

  • Haskell
    a240960 n = a240960_list !! (n-1)
    a240960_list = filter (\x -> a051612 x == a110088 x) [1..]
    
  • Maple
    with(numtheory):
    filter:= n -> sigma(n) - phi(n) = tau(n)^nops(factorset(n)):
    select(filter, [$1..1000]); # Robert Israel, Aug 05 2014
  • Mathematica
    Select[Range[300], DivisorSigma[1, #] - EulerPhi[#] == DivisorSigma[0, #]^PrimeNu[#]&] (* Jean-François Alcover, Mar 08 2019 *)
  • PARI
    is(n)=my(f=factor(n)); sigma(f)-eulerphi(f)==numdiv(f)^omega(f) \\ Charles R Greathouse IV, Nov 26 2014
  • Python
    from sympy import totient,divisors,divisor_count,primefactors
    filter(lambda x:sum(divisors(x))-totient(x)==divisor_count(x)**len(primefactors(x)), range(1,10**5)) # Chai Wah Wu, Aug 05 2014