A240965 Decimal expansion of integral_(0..1) K(1-x^2)^3 dx, where K is the complete elliptic integral of the first kind.
2, 3, 6, 3, 4, 0, 9, 0, 0, 1, 6, 1, 5, 4, 2, 3, 1, 5, 3, 6, 6, 3, 2, 6, 7, 4, 5, 6, 6, 8, 6, 5, 1, 6, 4, 1, 7, 4, 8, 4, 1, 3, 9, 5, 1, 5, 8, 8, 6, 1, 3, 9, 3, 2, 8, 8, 5, 2, 9, 0, 5, 2, 6, 8, 0, 3, 8, 1, 9, 4, 8, 7, 8, 2, 6, 2, 0, 5, 9, 5, 9, 1, 2, 0, 8, 1, 5, 2, 0, 7, 9, 6, 6, 3, 0, 5, 8, 8, 1, 1, 6, 7, 5, 5, 5
Offset: 2
Examples
23.634090016154231536632674566865164174841395158861393288529...
Links
- M. Rogers, J. G. Wan, and I. J. Zucker, Moments of elliptic entegrals and critical L-values.
- Eric Weisstein's MathWorld, Complete Elliptic Integral of the First Kind.
Crossrefs
Cf. A068466.
Programs
-
Mathematica
(* NIntegrate[EllipticK[1 - x^2]^3, {x, 0, 1}] *) RealDigits[Gamma[1/4]^8/(128*Pi^2), 10, 105] // First
-
PARI
intnum(x=0,1,ellK(sqrt(1-x^2))^3) \\ Charles R Greathouse IV, Feb 05 2025
-
PARI
gamma(1/4)^8/128/Pi^2 \\ Charles R Greathouse IV, Feb 05 2025
Formula
Gamma(1/4)^8/(128*Pi^2).