A240969 Decimal expansion of the breadth of the "caliper", the broadest worm of unit length.
4, 3, 8, 9, 2, 5, 3, 6, 9, 2, 5, 9, 4, 6, 6, 4, 5, 6, 7, 4, 0, 8, 8, 5, 2, 6, 1, 1, 5, 8, 5, 2, 3, 7, 7, 4, 2, 1, 9, 1, 4, 9, 3, 8, 6, 5, 1, 4, 3, 8, 8, 7, 2, 6, 8, 3, 0, 1, 0, 7, 5, 9, 7, 5, 2, 9, 2, 6, 0, 4, 4, 2, 0, 4, 9, 2, 6, 6, 8, 7, 2, 4, 6, 0, 3, 3, 0, 0, 4, 1, 3, 7, 5, 7, 9, 1, 4, 9, 2, 2
Offset: 0
Examples
phi = 0.29004634452825946320905124629823276955932638591519522257237... psi = 0.480931237564380337681715512959999015584157793267187574483... beta = 0.43892536925946645674088526115852377421914938651438872683...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.4 Moser's Worm Constant, p. 493.
Links
- Jean-François Alcover, Figure 8.3 A caliper.
- Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 60.
Crossrefs
Cf. A227472.
Programs
-
Mathematica
phi = ArcSin[1/6 + (4/3)*Sin[(1/3 )*ArcSin[17/64]]]; psi = ArcTan[(1/2)*Sec[phi]]; beta = (1/2)*(Pi/2 - phi - 2*psi + Tan[phi] + Tan[psi])^(-1); RealDigits[beta, 10, 100] // First
Formula
See trig. formulas in Mathematica code.
Sec(phi), an algebraic number, is the positive root of 3x^6 + 36x^4 + 16x^2 - 64.
Comments