cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379390 Decimal expansion of 1/A240969.

Original entry on oeis.org

2, 2, 7, 8, 2, 9, 1, 6, 4, 1, 4, 4, 0, 4, 3, 7, 5, 4, 3, 6, 6, 1, 4, 9, 2, 5, 7, 0, 7, 1, 7, 4, 7, 6, 3, 0, 9, 1, 5, 0, 5, 9, 7, 4, 3, 2, 7, 4, 9, 6, 9, 9, 5, 5, 1, 8, 6, 0, 0, 2, 6, 7, 0, 9, 9, 9, 2, 3, 2, 7, 1, 9, 5, 2, 7, 3, 8, 0, 8, 5, 0, 2, 5, 8, 9, 1, 0, 9, 9, 9, 3, 7, 2, 9, 4, 4, 9, 6, 1, 5
Offset: 1

Views

Author

Stefano Spezia, Dec 22 2024

Keywords

Examples

			2.2782916414404375436614925707174763091505974327...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.4.1, p. 493.

Crossrefs

Cf. A240969.

Programs

  • Mathematica
    phi = ArcSin[1/6 + (4/3)*Sin[(1/3 )*ArcSin[17/64]]]; psi = ArcTan[(1/2)*Sec[phi]]; beta = (1/2)*(Pi/2 - phi - 2*psi + Tan[phi] + Tan[psi])^(-1); RealDigits[1/beta, 10, 100] // First (* after Jean-François Alcover, Sep 04 2014 in A240969 *)

A247553 Decimal expansion of A(rectangles), an analog of Moser's worm constant, which is associated with the class of rectangular regions of the plane.

Original entry on oeis.org

3, 9, 4, 3, 8, 4, 7, 6, 8, 8, 3, 6, 8, 1, 3, 6, 2, 8, 2, 5, 4, 0, 3, 9, 2, 1, 8, 5, 4, 3, 1, 9, 9, 6, 8, 1, 6, 0, 7, 9, 5, 3, 9, 9, 0, 3, 8, 9, 3, 7, 5, 1, 5, 2, 2, 2, 8, 8, 3, 7, 3, 7, 9, 0, 9, 4, 0, 1, 2, 9, 3, 4, 2, 3, 1, 5, 0, 8, 8, 0, 0, 2, 0, 7, 9, 1, 6, 1, 8, 3, 7, 7, 2, 8, 8, 4, 8, 0, 7, 6, 6, 7
Offset: 0

Views

Author

Jean-François Alcover, Sep 19 2014

Keywords

Examples

			0.39438476883681362825403921854319968160795399...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.4 Moser's Worm Constant, p. 492.

Crossrefs

Cf. A240969 (beta).

Programs

  • Mathematica
    phi = ArcSin[1/6 + (4/3)*Sin[(1/3)*ArcSin[17/64]]]; psi = ArcTan[(1/2)*Sec[phi]]; beta = (1/2)*(Pi/2 - phi - 2*psi + Tan[phi] + Tan[psi])^(-1); A = beta*Sqrt[1 - beta^2]; RealDigits[A, 10, 102] // First

Formula

A = beta*sqrt(1 - beta^2), where beta is A240969.

A256367 Decimal expansion of sec(phi), a constant related to the "broadworm" (or "caliper") problem.

Original entry on oeis.org

1, 0, 4, 3, 5, 9, 0, 1, 0, 9, 5, 9, 4, 9, 8, 4, 7, 5, 3, 8, 1, 1, 8, 4, 1, 7, 7, 1, 2, 8, 7, 0, 2, 2, 7, 3, 3, 3, 5, 4, 8, 8, 9, 6, 9, 6, 9, 3, 4, 0, 3, 7, 8, 9, 7, 1, 0, 6, 5, 8, 9, 3, 0, 6, 7, 0, 3, 3, 5, 5, 3, 4, 3, 4, 8, 9, 7, 2, 3, 7, 0, 4, 6, 9, 9, 3, 1, 7, 0, 5, 3, 3, 9, 9, 6, 4, 1, 8, 2, 8, 5, 6, 2
Offset: 1

Views

Author

Jean-François Alcover, Mar 26 2015

Keywords

Comments

A cubic number of denominator 3 and minimal polynomial 3x^6 + 36x^4 + 16x^2 - 64. - Charles R Greathouse IV, May 13 2019

Examples

			1.0435901095949847538118417712870227333548896969340378971...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.4 Moser's Worm Constant, pp. 493-494.

Crossrefs

Programs

  • Mathematica
    RealDigits[Root[3*x^6 + 36*x^4 + 16*x^2 - 64, x, 2], 10, 103] // First
  • PARI
    polrootsreal(3*x^6 + 36*x^4 + 16*x^2 - 64)[2] \\ Charles R Greathouse IV, May 13 2019

Formula

Sec(phi) = 1/sqrt(1 - (1/6 + (4/3)*sin((1/3)*arcsin(17/64)))^2), which is the positive root of 3*x^6 + 36*x^4 + 16*x^2 - 64.
Showing 1-3 of 3 results.