cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A246053 The denominator of h(n-k)*h(k)/h(n) where h(x) = zeta(2*x)*(4^x-2) and k = floor(n/2).

Original entry on oeis.org

2, 2, 7, 62, 381, 365, 1414477, 573370, 118518239, 5749691557, 274638832071, 768018339627, 29741482024668555, 860983513348179, 65053034220152267, 1850237821952082716222, 16555640865486520478399, 962703047799452264039, 29167285342563717499865628061
Offset: 0

Views

Author

Peter Luschny, Aug 12 2014

Keywords

Comments

There are terms that are not squarefree. For example, a(113) is divisible by 631^2 and a(114) is divisible by 103^2. Most terms appear to be divisible by numerator(bernoulli(2*n)/factorial(2*n)) but not all. The first two exceptions are a(1437) and a(23766). - Hans Havermann, Aug 16 2014

Examples

			a( 0) = 2
a( 1) = 2
a( 2) = 7
a( 3) = 2 * 31
a( 4) = 3 * 127
a( 5) = 5 * 73
a( 6) = 23 * 89 * 691
a( 7) = 2 * 5 * 7 * 8191
a( 8) = 7 * 31 * 151 * 3617
a( 9) = 43867 * 131071
a(10) = 3 * 283 * 617 * 524287
a(11) = 3 * 7 * 11 * 127 * 131 * 337 * 593
a(12) = 3 * 5 * 47 * 103 * 178481 * 2294797
a(13) = 3 * 13 * 31 * 601 * 1801 * 657931
		

Crossrefs

Cf. A242035 (numerator), A240978 (largest prime divisor), A242050, A246051, A246052.

Programs

  • Sage
    h = lambda x: zeta(2*x)*(4^x-2)
    A246053 = lambda n: Integer((h((n+1)//2)*h(n//2)/h(n)).denominator())
    [A246053(n) for n in range(19)]

Formula

a(n) = A246052(n, floor(n/2)).

A246052 Triangle read by rows: denominator of h(n-k)*h(k)/h(n) where h(x) = zeta(2*x)*(4^x-2), 0<=k<=n.

Original entry on oeis.org

2, 2, 2, 2, 7, 2, 2, 62, 62, 2, 2, 381, 381, 381, 2, 2, 5110, 365, 365, 5110, 2, 2, 1414477, 2828954, 1414477, 2828954, 1414477, 2, 2, 1720110, 49146, 573370, 573370, 49146, 1720110, 2, 2, 16931177, 50793531, 1638501, 118518239, 1638501, 50793531, 16931177, 2
Offset: 0

Views

Author

Peter Luschny, Aug 11 2014

Keywords

Comments

Conjecture: A240978(n) divides T(n,k) for k in (1..n-1) and n>=2.

Examples

			             2
            2, 2
          2, 7, 2
        2, 62, 62, 2
    2, 381, 381, 381, 2
2, 5110, 365, 365, 5110, 2
		

Crossrefs

Cf. A246051 (numerators), A240978, A246053.

Programs

  • Maple
    h := x -> Zeta(2*x)*(4^x-2);
    A246052 := (n, k) -> denom(h(n-k)*h(k)/h(n));
    seq(print(seq(A246052(n, k), k=0..n)), n=0..8);
  • Sage
    h = lambda n: zeta(2*n)*(4^n-2)
    A246052 = lambda n, k: (h(n-k)*h(k)/h(n)).denominator()
    for n in range(8): [A246052(n, k) for k in (0..n)]

A242032 A sequence related to lower bounds for the number of distinct differentiable structures on spheres of the form S^(4*k-1).

Original entry on oeis.org

2, 2, 7, 31, 127, 73, 1414477, 8191, 16931177, 5749691557, 91546277357, 3324754717, 1982765468311237, 22076500342261, 65053034220152267, 925118910976041358111, 16555640865486520478399, 8089941578146657681, 29167285342563717499865628061
Offset: 0

Views

Author

Peter Luschny, Aug 12 2014

Keywords

Comments

Definition: Divide the prime factorization of an integer M into two parts: L(k, M) = product{p^v(M) the highest power of a prime p which divides M and p < k} and H(k, M) = M / L(k, M). Then a(n) = H(2*floor((n+1)/2), A246053(n)).
For some n the a(n) are lower bounds for the number of distinct differentiable structures on spheres. Compare theorem 2 of the Milnor 1959 paper which asserts that a(2) and a(4) through a(8) are lower bounds for the spheres S^(4*k-1) for k = 2 and 4,..,8.
Let b(n) = numerator(B(2*n)/(2*n)!*(4^n-2)*(-1)^(n-1)), B(n) Bernoulli number. Apart from n=0 and n=1 the first n such that a(n) != b(n) is n = 1437. Thus in the range [2..1436] the a(n) are the numerators in the Taylor series for x*cosec(x), A036280.

Examples

			a( 0) = 2
a( 1) = 2
a( 2) = 7
a( 3) = 31
a( 4) = 127
a( 5) = 73
a( 6) = 23 * 89 * 691
a( 7) = 8191
a( 8) = 31 * 151 * 3617
a( 9) = 43867 * 131071
a(10) = 283 * 617 * 524287
a(11) = 127 * 131 * 337 * 593
a(12) = 47 * 103 * 178481 * 2294797
a(13) = 31 * 601 * 1801 * 657931
		

Crossrefs

Programs

  • Mathematica
    h[x_] := Zeta[2x] (4^x-2);
    a[n_] := Module[{M, k, p}, M = Denominator[h[Quotient[n+1, 2]] h[Quotient[ n, 2]]/h[n]]; k = 2 Quotient[n+1, 2]; p = 2; While[p < k, While[ Divisible[M, p], M = M/p]; p = NextPrime[p]]; M];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 12 2019, from Sage code *)
  • Sage
    def A242032(n):
        h = lambda x: zeta(2*x)*(4^x-2)
        M = Integer((h((n+1)//2)*h(n//2)/h(n)).denominator())
        k = 2*((n+1)//2)
        P = Primes()
        p = P.first()
        while p < k:
            while p.divides(M):
                M /= p
            p = P.next(p)
        return M
    [A242032(n) for n in (0..30)]
Showing 1-3 of 3 results.