A246053
The denominator of h(n-k)*h(k)/h(n) where h(x) = zeta(2*x)*(4^x-2) and k = floor(n/2).
Original entry on oeis.org
2, 2, 7, 62, 381, 365, 1414477, 573370, 118518239, 5749691557, 274638832071, 768018339627, 29741482024668555, 860983513348179, 65053034220152267, 1850237821952082716222, 16555640865486520478399, 962703047799452264039, 29167285342563717499865628061
Offset: 0
a( 0) = 2
a( 1) = 2
a( 2) = 7
a( 3) = 2 * 31
a( 4) = 3 * 127
a( 5) = 5 * 73
a( 6) = 23 * 89 * 691
a( 7) = 2 * 5 * 7 * 8191
a( 8) = 7 * 31 * 151 * 3617
a( 9) = 43867 * 131071
a(10) = 3 * 283 * 617 * 524287
a(11) = 3 * 7 * 11 * 127 * 131 * 337 * 593
a(12) = 3 * 5 * 47 * 103 * 178481 * 2294797
a(13) = 3 * 13 * 31 * 601 * 1801 * 657931
A240978
The largest prime divisor of A246053(n).
Original entry on oeis.org
2, 2, 7, 31, 127, 73, 691, 8191, 3617, 131071, 524287, 593, 2294797, 657931, 362903, 1001259881, 2147483647, 151628697551, 26315271553053477373, 154210205991661, 1897170067619, 1520097643918070802691, 1798482437, 67568238839737, 153289748932447906241
Offset: 0
A246051
Triangle read by rows: numerator of h(n-k)*h(k)/h(n) where h(x) = zeta(2*x)*(4^x-2), 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 49, 49, 1, 1, 310, 343, 310, 1, 1, 4191, 341, 341, 4191, 1, 1, 1162525, 2669667, 1374230, 2669667, 1162525, 1, 1, 1414477, 46501, 562991, 562991, 46501, 1414477, 1, 1, 13924700, 48092218, 1613300, 117628797, 1613300, 48092218, 13924700, 1
Offset: 0
Triangle starts:
1
1, 1
1, 5, 1
1, 49, 49, 1
1, 310, 343, 310, 1
1, 4191, 341, 341, 4191, 1
-
h := x -> Zeta(2*x)*(4^x-2);
A246051 := (n, k) -> h(n-k)*h(k)/h(n);
seq(print(seq(numer(A246051(n, k)), k=0..n)), n=0..8);
-
h = lambda n: zeta(2*n)*(4^n-2)
A246051 = lambda n, k: h(n-k)*h(k)/h(n)
for n in range(8): [A246051(n, k).numerator() for k in (0..n)]
A242035
The numerator of h(n-k)*h(k)/h(n) where h(x) = zeta(2*x)*(4^x-2) and k = floor(n/2).
Original entry on oeis.org
1, 1, 5, 49, 343, 341, 1374230, 562991, 117628797, 5722552563, 274111769750, 767094923209, 29727071936873882, 860722536439030, 65045120396044500, 1850097086237495825037, 16555136396811464938269, 962684710425111932621, 29167062964422333027973288250
Offset: 0
Showing 1-4 of 4 results.
Comments