cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240987 (2^(p-1) modulo p^2) + (3^(p-1) modulo p^2), where p = prime(n).

Original entry on oeis.org

5, 4, 22, 58, 57, 145, 393, 401, 784, 466, 715, 705, 1806, 1163, 2587, 3129, 2893, 2991, 1677, 2416, 5988, 5769, 9298, 2672, 6210, 17879, 14628, 11879, 18314, 9833, 9908, 12054, 9729, 10427, 34719, 15102, 27634
Offset: 1

Views

Author

Felix Fröhlich, Aug 06 2014

Keywords

Comments

A value of 2 would indicate a prime that is Wieferich to bases 2 and 3 (i.e., a term of both A001220 and A014127). No such prime is currently known.

Crossrefs

Programs

  • Maple
    map(p -> (2 &^ (p-1) mod p^2) + (3 &^ (p-1) mod p^2), select(isprime,[2,seq(2*i+1,i=1..1000)])); # Robert Israel, Aug 11 2014
  • Mathematica
    Table[p = Prime[n]; PowerMod[2, p-1, p^2] + PowerMod[3, p-1, p^2], {n, 40}] (* Jean-François Alcover, Sep 19 2018 *)
  • PARI
    forprime(p=2, 1e2, a=2^(p-1)%p^2; b=3^(p-1)%p^2; print1(a+b, ", "))