cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241087 Number of partitions p of n into distinct parts such that max(p) = 2*(number of parts of p).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 6, 5, 6, 6, 7, 7, 9, 10, 12, 13, 15, 16, 18, 19, 20, 23, 25, 28, 30, 35, 38, 43, 46, 51, 55, 61, 64, 72, 76, 84, 91, 101, 109, 120, 130, 142, 155, 168, 181, 196, 212, 228, 248, 266, 288, 311, 337
Offset: 0

Views

Author

Clark Kimberling, Apr 17 2014

Keywords

Examples

			a(15) counts these 2 partitions:  8421, 654.
		

Crossrefs

Programs

  • Mathematica
    z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
    Table[Count[f[n], p_ /; Max[p] < 2*Length[p]], {n, 0, z}]  (* A241085 *)
    Table[Count[f[n], p_ /; Max[p] <= 2*Length[p]], {n, 0, z}] (* A241086 *)
    Table[Count[f[n], p_ /; Max[p] == 2*Length[p]], {n, 0, z}] (* A241087 *)
    Table[Count[f[n], p_ /; Max[p] >= 2*Length[p]], {n, 0, z}] (* A241088 *)
    Table[Count[f[n], p_ /; Max[p] > 2*Length[p]], {n, 0, z}]  (* A241089 *)