cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241121 Type I Minkowski-Siegel mass constants (numerators).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 31, 31, 691, 42151, 29713, 505121, 642332179, 692319119, 8003636403977, 248112728523287, 593468652605200909, 50904295073459007001, 1015740532498234470066371, 701876707956280018815862361
Offset: 1

Views

Author

Jean-François Alcover, Apr 16 2014

Keywords

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, Chapter 16.

Crossrefs

Programs

  • Mathematica
    a[n_ /; 1 <= n <= 8] = 1/(n!*2^n); a[n_ /; n > 8] := (k = Quotient[n, 2]; r = Mod[n, 8]; Switch[r, 0, (1-2^-k)*(1 + 2^(1-k))/(k!*2)*BernoulliB[k]*Product[BernoulliB[j], {j, 2, 2k-2, 2}], 1|7, (2^k+1)/(k!*2^(2k+1))*Product[BernoulliB[j], {j, 2, 2k, 2}], 2|6, 1/((k-1)!*2^(2k+1))*EulerE[k-1]*Product[BernoulliB[j], {j, 2, 2k-2, 2}], 3|5, (2^k-1)/(k!*2^(2k+1))*Product[BernoulliB[j], {j, 2, 2k, 2}], 4, (1-2^-k)*(1-2^(1-k))/(k!*2)*BernoulliB[k]*Product[BernoulliB[j], {j, 2, 2k-2, 2}], _, Print["error n = ", n]; 0] // Abs); Table[a[n] // Numerator, {n, 1, 30}]
  • Sage
    def a(n):
        if n==1: M = 1/2
        elif n%8 == 0: M = (1-2^(-n/2))*(1+2^(1-n/2))*bernoulli(n/2)/(2*factorial(n/2))
        elif n%8 in [1,7]: M = (2^((n-1)/2) + 1)/(2^n*factorial((n-1)/2))
        elif n%8 in [2,6]: M = euler_number(n/2-1)/(factorial(n/2-1)*(2^(n+1)))
        elif n%8 in [3,5]: M = (2^((n-1)/2) - 1)/(2^n*factorial((n-1)/2))
        elif n%8 == 4: M = (1-2^(-n/2))*(1-2^(1-n/2))*bernoulli(n/2)/(2*factorial(n/2))
        M *= product([abs(bernoulli(i)) for i in range(2, n, 2)])
        return abs(M).numerator()  # Robin Visser, Feb 08 2025

Formula

a(n)/A241122(n) ~ C * (n/(2*Pi*e*sqrt(e)))^(n^2/4) * (8*Pi*e/n)^(n/4) * (1/n)^(1/24), where C = 2^(-5/4) * e^(1/24) * exp(1/12 - zeta'(-1))^(-1/2) * Product_{i>=1} zeta(2*i) = 0.7048648734... [Kellner and Milnor--Husemoller]. - Robin Visser, Feb 08 2025