A241140 Decimal expansion of an infinite product involving the ratio of n! to its Stirling approximation.
1, 0, 5, 7, 3, 2, 8, 1, 4, 1, 0, 0, 1, 8, 7, 6, 9, 2, 4, 9, 5, 2, 6, 5, 7, 0, 9, 4, 1, 8, 4, 2, 8, 6, 6, 4, 3, 1, 3, 1, 7, 9, 1, 2, 5, 2, 6, 2, 8, 4, 3, 3, 8, 2, 2, 0, 9, 5, 1, 4, 6, 0, 7, 7, 1, 5, 3, 3, 9, 2, 3, 8, 4, 4, 0, 6, 2, 1, 4, 0, 4, 4, 6, 8, 3, 0, 2, 0, 1, 6, 7, 3, 0, 1, 6, 6, 3, 3, 2, 3, 3
Offset: 1
Examples
1.057328141001876924952657094184286643131791252628433822095146...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin Constant, p. 135.
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 20.
- Eric Weisstein's MathWorld, Glaisher-Kinkelin Constant
Programs
-
Mathematica
RealDigits[Glaisher^3/(2^(7/12)*Pi^(1/4)), 10, 101] // First
Formula
Product_{n>=1} (n! / ((sqrt(2*Pi*n)*n^n)/e^n))^((-1)^(n-1)) = A^3/(2^(7/12)*Pi^(1/4)), where A is the Glaisher-Kinkelin constant.
Comments