cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241148 Number of factorials k!, 0<=k<=n, relatively prime to n! in Fermi-Dirac arithmetic.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 5, 5, 2, 2, 7, 7, 4, 4, 4, 2, 2, 2, 5, 5, 7, 4, 3, 3, 4, 4, 2, 2, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4, 3, 2, 4, 4, 3, 3, 2, 4, 5, 5, 4, 4, 2, 2, 2, 2, 6, 5, 2, 2, 3, 3, 7, 7, 3, 2, 2, 2, 3, 3, 3, 4, 3, 3, 4, 4, 2, 2, 2, 2, 6, 6, 4, 4, 2, 2, 2, 3, 4
Offset: 0

Views

Author

Vladimir Shevelev, Apr 16 2014

Keywords

Comments

Or, equivalently, the number of factorials k!, 0<=k<=n, for which k! and n! have no common A050376-factors in their factorizations over distinct terms of A050376.
Note that 1 (=0!=1!) corresponds to an empty subset of A050376.

Examples

			0!=1, 1!=1; further we have the following factorizations of k! over distinct terms of A050376 for k = 2,3,4,5,6:
2!=2, 3!=2*3, 4!=2*3*4, 5!=2*3*4*5, 6!=5*9*16. Thus, in the sense of the factorizations being considered, 6! is relatively prime to 0!,1!,2!,3!, and 4!. So a(6)=5.
		

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (Russian; MR 2000f: 11097, pp. 3912-3913).

Crossrefs

Programs

  • Mathematica
    b[n_] := 2^(-1 + Position[Reverse@IntegerDigits[n, 2], ?(# == 1 &)]) // Flatten; infp[n] := Module[{np = PrimePi[n]}, v = Table[0, {np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j, 2, n}], {k, 1, np}]; (Prime /@ Range[np])^(b /@ v) // Flatten]; infCoprimeQ[x_, y_] := Intersection[infp[x], infp[y]] == {}; a[n_] := Length @ Select[Range[0, n], infCoprimeQ[n, #] & ]; Array[a, 87, 0] (* Amiram Eldar, Sep 17 2019 *)

Extensions

More terms from Peter J. C. Moses, Apr 18 2014