cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241152 Maximal number of partitions having the same degree in the partition graph G(n) defined at A241150.

Original entry on oeis.org

2, 2, 3, 3, 4, 6, 8, 10, 13, 17, 22, 32, 43, 57, 77, 94, 119, 144, 178, 209, 274, 364, 465, 597, 746, 935, 1143, 1389, 1674, 2006, 2376, 2803, 3284, 3905, 4853, 6010, 7360, 8988, 10834, 13070, 15565, 18522, 21836, 25713, 30030, 35048, 40575, 46930, 53950
Offset: 2

Views

Author

Keywords

Examples

			a(7) counts these 6 partitions:  61, 52, 43, 331, 322, 2221, which all have degree 2 in G(7), as seen by putting k = 7 in the Mathematica program.
		

Crossrefs

Programs

  • Mathematica
    z = 25; spawn[part_] := Map[Reverse[Sort[Flatten[ReplacePart[part, {# - 1, 1}, Position[part, #, 1, 1][[1]][[1]]]]]] &, DeleteCases[DeleteDuplicates[part], 1]];
         unspawn[part_] := If[Length[Cases[part, 1]] > 0, Map[ReplacePart[Most[part], Position[Most[part], #, 1, 1][[1]][[1]] -> # + 1] &, DeleteDuplicates[Most[part]]], {}]; m = Map[Last[Transpose[Tally[Map[#[[2]] &, Tally[Flatten[{Map[unspawn, #], Map[spawn, #]}, 2] &[IntegerPartitions[#]]]]]]] &, 1 + Range[z]];
         Column[m] (* A241150 as an array *)
         Flatten[m] (* A241150 as a sequence *)
         Table[Length[m[[n]]], {n, 1, z}] (* A241151 *)
         Table[Max[m[[n]]], {n, 1, z}] (* A241152 *)
         Table[Last[m[[n]]], {n, 1, z}] (* A241153 *)
         (* Next, show the graph G(k) *)
         k = 8; graph = Flatten[Table[part = IntegerPartitions[k][[n]]; Map[FromDigits[part] -> FromDigits[#] &, spawn[part]], {n, 1, PartitionsP[k]}]]; Graph[graph, VertexLabels -> "Name", ImageSize -> 500, ImagePadding -> 20] (* Peter J. C. Moses, Apr 15 2014 *)