A241153 Number of partitions having the maximal degree in the partition graph G(n) defined at A241150.
2, 1, 1, 2, 1, 1, 2, 5, 1, 1, 2, 5, 10, 1, 1, 2, 5, 10, 20, 1, 1, 2, 5, 10, 20, 36, 1, 1, 2, 5, 10, 20, 36, 65, 1, 1, 2, 5, 10, 20, 36, 65, 110, 1, 1, 2, 5, 10, 20, 36, 65, 110, 185, 1, 1, 2, 5, 10, 20, 36, 65, 110, 185, 300
Offset: 2
Examples
a(9) counts these 5 partitions: 5211, 4311, 42111, 321111, 32211, which all have degree 5, which is maximal for the graph G(9), as seen by putting k = 9 in the Mathematica program. (See the Example section of A241150.)
Programs
-
Mathematica
z = 25; spawn[part_] := Map[Reverse[Sort[Flatten[ReplacePart[part, {# - 1, 1}, Position[part, #, 1, 1][[1]][[1]]]]]] &, DeleteCases[DeleteDuplicates[part], 1]]; unspawn[part_] := If[Length[Cases[part, 1]] > 0, Map[ReplacePart[Most[part], Position[Most[part], #, 1, 1][[1]][[1]] -> # + 1] &, DeleteDuplicates[Most[part]]], {}]; m = Map[Last[Transpose[Tally[Map[#[[2]] &, Tally[Flatten[{Map[unspawn, #], Map[spawn, #]}, 2] &[IntegerPartitions[#]]]]]]] &, 1 + Range[z]]; Column[m] (* A241150 as an array *) Flatten[m] (* A241150 as a sequence *) Table[Length[m[[n]]], {n, 1, z}] (* A241151 *) Table[Max[m[[n]]], {n, 1, z}] (* A241152 *) Table[Last[m[[n]]], {n, 1, z}] (* A241153 *) (* Next, show the graph G(k) *) k = 8; graph = Flatten[Table[part = IntegerPartitions[k][[n]]; Map[FromDigits[part] -> FromDigits[#] &, spawn[part]], {n, 1, PartitionsP[k]}]]; Graph[graph, VertexLabels -> "Name", ImageSize -> 500, ImagePadding -> 20] (* Peter J. C. Moses, Apr 15 2014 *)
Comments