cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241153 Number of partitions having the maximal degree in the partition graph G(n) defined at A241150.

Original entry on oeis.org

2, 1, 1, 2, 1, 1, 2, 5, 1, 1, 2, 5, 10, 1, 1, 2, 5, 10, 20, 1, 1, 2, 5, 10, 20, 36, 1, 1, 2, 5, 10, 20, 36, 65, 1, 1, 2, 5, 10, 20, 36, 65, 110, 1, 1, 2, 5, 10, 20, 36, 65, 110, 185, 1, 1, 2, 5, 10, 20, 36, 65, 110, 185, 300
Offset: 2

Views

Author

Keywords

Comments

a(n) = last number in row n of G(n), for n >= 2. The numbers in this sequence can be formatted as a triangle:
2
1 1 2
1 1 2 5
1 1 2 5 10
1 1 2 5 10 20
1 1 2 5 10 20 36 ...
Deleting column 1 leaves
1 2
1 2 5
1 2 5 10
1 2 5 10 20
1 2 5 10 20 36... ,
in which row n is identical to the first n+1 terms of A000712.

Examples

			a(9) counts these 5 partitions:  5211, 4311, 42111, 321111, 32211, which all have degree 5, which is maximal for the graph G(9), as seen by putting k = 9 in the Mathematica program.  (See the Example section of A241150.)
		

Crossrefs

Programs

  • Mathematica
    z = 25; spawn[part_] := Map[Reverse[Sort[Flatten[ReplacePart[part, {# - 1, 1}, Position[part, #, 1, 1][[1]][[1]]]]]] &, DeleteCases[DeleteDuplicates[part], 1]];
         unspawn[part_] := If[Length[Cases[part, 1]] > 0, Map[ReplacePart[Most[part], Position[Most[part], #, 1, 1][[1]][[1]] -> # + 1] &, DeleteDuplicates[Most[part]]], {}]; m = Map[Last[Transpose[Tally[Map[#[[2]] &, Tally[Flatten[{Map[unspawn, #], Map[spawn, #]}, 2] &[IntegerPartitions[#]]]]]]] &, 1 + Range[z]];
         Column[m] (* A241150 as an array *)
         Flatten[m] (* A241150 as a sequence *)
         Table[Length[m[[n]]], {n, 1, z}] (* A241151 *)
         Table[Max[m[[n]]], {n, 1, z}] (* A241152 *)
         Table[Last[m[[n]]], {n, 1, z}] (* A241153 *)
         (* Next, show the graph G(k) *)
         k = 8; graph = Flatten[Table[part = IntegerPartitions[k][[n]]; Map[FromDigits[part] -> FromDigits[#] &, spawn[part]], {n, 1, PartitionsP[k]}]]; Graph[graph, VertexLabels -> "Name", ImageSize -> 500, ImagePadding -> 20] (* Peter J. C. Moses, Apr 15 2014 *)