A241180 Start with n; add to it any of its digits; repeat; a(n) = minimal number of steps needed to reach a prime greater than n.
1, 4, 3, 3, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 6, 6, 1, 5, 3, 4, 2, 3, 1, 5, 1, 6, 2, 2, 5, 1, 2, 4, 4, 1, 3, 4, 3, 4, 1, 3, 2, 3, 2, 2, 1, 5, 2, 2, 2, 1, 4, 1, 4, 3, 3, 3, 1, 3, 3, 3, 1, 2, 1, 2, 4, 4, 2, 1, 2, 2, 4, 1, 3, 3, 3, 4, 1, 3, 3, 2, 3, 2, 2
Offset: 1
Examples
Examples, in condensed notation: 1+1=2 2+2=4+4=8+8=16+1=17 3+3=6+6=12+1=13 4+4=8+8=16+1=17 5+5=10+1=11 6+6=12+1=13 7+7=14+4=18+1=19 8+8=16+1=17 9+9=18+1=19 10+1=11 11+1=12+1=13 12+1=13 13+3=16+1=17 14+4=18+1=19 15+1=16+1=17 16+1=17 17+1=18+1=19 18+1=19 19+9=28+8=36+3=39+9=48+8=56+5=61 20+2=22+2=24+2=26+6=32+2=34+3=37 ...
References
- Eric Angelini, Posting to Sequence Fans Mailing List, Apr 20 2014
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..100000
Crossrefs
Programs
-
Maple
g:= proc(n,Nmax) option remember; local L,d,t; if isprime(n) then return 0 fi; if n > Nmax then return infinity fi; L:= convert(convert(n,base,10),set) minus {0}; 1 + min(seq(procname(n+d),d=L)); end proc: f:= proc(n,Nmax) local L,d,t; L:= convert(convert(n,base,10),set) minus {0}; 1 + min(seq(g(n+d, Nmax),d=L)) end proc: map(f, [$1..200], 1000); # Robert Israel, Mar 17 2019
-
Mathematica
A241180[n_] := Module[{c, nx}, c = 1; nx = n; While[ ! AnyTrue[nx = Flatten[nx + IntegerDigits[nx]], PrimeQ [#] && # > n &], c++]; Return[c]]; Table[A241180[i], {i, 100}] (* Robert Price, Mar 17 2019 *)
Extensions
a(23)-a(87) from Hiroaki Yamanouchi, Sep 05 2014
Comments