cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241222 Number of collinear point triples on a centered hexagonal grid of size n.

Original entry on oeis.org

0, 3, 69, 390, 1314, 3441, 7503, 14388, 25692, 42471, 66417, 100194, 145206, 204429, 280971, 377400, 496608, 642891, 821925, 1034742, 1288602, 1587009, 1933695, 2339100, 2802804, 3334983, 3942585, 4627002, 5404542, 6278661, 7252539, 8332968, 9537456
Offset: 1

Views

Author

Martin Renner, Apr 17 2014

Keywords

Comments

A centered hexagonal grid of size n is a grid with A003215(n-1) points forming a hexagonal lattice.

Examples

			For n = 2 the points are on the three diagonals through the center of the hexagon as following:
    . .     . *     * .
   * * *   . * .   . * .
    . .     * .     . *
		

Crossrefs

Programs

  • PARI
    c(n,s,fmin,fmax)={sum(k=1+s, n, max(0, fmax(k-s)-max(fmin(k)-1,if(k-2*s>0,fmax(k-2*s)))))}
    b(n, u, v)={c(2*n-1, u, i->max(0,i-n)+1+i\u*v, i->min(i,n)+n-1+i\u*v)}
    gm(n)={my(v=vector(n)); for(g=2, n, v[g]=binomial(g+1, 3) - sum(k=2, g-1, v[k]*min(k, g-k+1))); v}
    a(n)={my(gmv=gm(n-1)); 3*(binomial(2*n-1,3) + 2*sum(k=0,n-2,binomial(n+k,3)) + sum(u=1, 2*n-3, sum(v=1, 2*n-2-u, my(m=gmv[gcd(u,v)]);if(m>0, m*b(n,u,v), 0))))} \\ Andrew Howroyd, Sep 18 2017

Extensions

a(7) from Martin Renner, May 31 2014
a(8)-a(22) from Giovanni Resta, May 31 2014
Terms a(23) and beyond from Andrew Howroyd, Sep 18 2017