cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A241223 Number of triangles on a centered hexagonal grid of size n.

Original entry on oeis.org

0, 32, 900, 7380, 34676, 118044, 325872, 775856, 1653888, 3237984, 5923028, 10249596, 16938588, 26924036, 41393424, 61830480, 90059672, 128293728, 179185500, 245889068, 332107188, 442162836, 581060024, 754545360, 969196896, 1232477192, 1552824900
Offset: 1

Views

Author

Martin Renner, Apr 17 2014

Keywords

Comments

A centered hexagonal grid of size n is a grid with A003215(n-1) points forming a hexagonal lattice.

Examples

			For n = 2 the 32 triangles are the following:
/. *     * *     * .     . .     . .     . .     . *     * *
. * *   . * .   * * .   * * .   . * .   . * *   * . *   . . .
\. .     . .     . .     * .     * *     . *     . .     * .
-
/* .     . .     . *     * .     . *     * *     * .     . *
* . .   * . *   . . .   . . *   . . *   . . .   * . *   * . .
\. *     * .     * *     . *     * .     . *     . .     * .
-
/* .     . .     * *     * *     * .     . .     . .     . *
. . .   * . *   . . *   * . .   * . .   * . .   . . *   . . *
\* *     . *     . .     . .     * .     * *     * *     . *
-
/* .     . *     * .     . .     . .     . *     * .     . *
. * *   * * .   . * .   * * .   . * *   . * .   . . *   * . .
\. .     . .     * .     . *     * .     . *     * .     . *
		

Crossrefs

Cf. A045996.

Formula

a(n) = A240826(n) - A241222(n).
a(n) = A241224(n) + A241225(n) + A241226(n) = A241227(n) + A241228(n).

Extensions

a(7) from Martin Renner, May 31 2014
a(8)-a(22) from Giovanni Resta, May 31 2014
Terms a(23) and beyond from Andrew Howroyd, Sep 18 2017

A241228 Number of isosceles triangles on a centered hexagonal grid of size n.

Original entry on oeis.org

0, 20, 252, 1296, 4232, 10668, 22956, 43832, 77160, 126972, 198176, 296976, 429252, 602876, 825552, 1106376, 1454192, 1879956, 2397024, 3014312, 3747564, 4609476
Offset: 1

Views

Author

Martin Renner, Apr 17 2014

Keywords

Comments

A centered hexagonal grid of size n is a grid with A003215(n-1) points forming a hexagonal lattice.

Crossrefs

Cf. A186434.

Formula

a(n) = A241223(n) - A241227(n).

Extensions

a(7) from Martin Renner, May 31 2014
a(8)-a(22) from Giovanni Resta, May 31 2014

A241236 Number of scalene triangles, distinct up to congruence, on a centered hexagonal grid of size n.

Original entry on oeis.org

0, 1, 19, 99, 310, 760, 1556, 2863, 4849, 7713, 11702, 17077, 24066, 33021, 44272, 58180, 75148, 95526, 119758, 148489, 181924, 220796, 265519, 316736, 375006, 441061, 515467, 598680, 691761, 795410, 909971, 1036745, 1176108, 1329286, 1496711, 1679852, 1879036, 2095235
Offset: 1

Views

Author

Martin Renner, Apr 17 2014

Keywords

Comments

A centered hexagonal grid of size n is a grid with A003215(n-1) points forming a hexagonal lattice.

Examples

			For n = 2 the only kind of non-congruent scalene triangles is the following:
/. *
* . *
\. .
		

Crossrefs

Formula

a(n) = A241231(n) - A241237(n).

Extensions

a(7) from Martin Renner, May 31 2014
a(8)-a(13) from Giovanni Resta, May 31 2014
More terms from Bert Dobbelaere, Oct 17 2022
Showing 1-3 of 3 results.