A241276 Number of partitions of n that come from sizes of conjugacy classes of groups of order n.
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 3, 2, 2, 1, 7, 1, 2, 2, 2, 1, 4, 1, 6, 1, 2, 1, 6, 1, 2, 2, 5, 1, 6, 1, 2, 1, 2, 1, 13, 1, 3, 1, 3, 1, 7, 2, 5, 2, 2, 1, 9, 1, 2, 2, 16, 1, 4, 1, 3, 1, 4, 1, 17, 1, 2, 2, 2, 1, 6, 1, 11, 3, 2, 1, 9, 1, 2, 1, 4, 1, 6, 1, 2, 2, 2, 1, 30, 1, 3, 1, 7
Offset: 1
Examples
If n = 6 there are two groups of order 6: Z_6, all of whose conjugacy classes are of order 1 giving the partition [1,1,1,1,1,1] and S_6, which has three conjugacy classes whose sizes are 1, 2 and 3, giving the partition [1,2,3]. Hence a(6) = 2.
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..1023
- Wikipedia, Conjugacy Class
Programs
-
GAP
a:=[];; for n in [1..100] do P:=[]; for i in [1..NumberSmallGroups(n)] do g:=SmallGroup(n,i); cc:=ConjugacyClasses(g); L:=List(cc,Size); Sort(L); Add(P,L); P:=Set(P); od; Add(a,Length(P)); od; a;
-
GAP
a := function(n) local i, p, P; P := []; for i in [1..NrSmallGroups(n)] do p := List(ConjugacyClasses(SmallGroup(n,i)), Size); Sort(p); MakeImmutable(p); AddSet(P, p); od; return Length(P); end; # Eric M. Schmidt, Oct 16 2014
Comments